


1 Abstract Linear Algebra
 VECTOR SPACES

To do linear combinations
,

we need to be able to scale and add

Examples of Linear Combinations

1) Polynomials
Rn[X] : set of polynomials in x with real coefficients of degree In
In[X] = Eco + G

,
x + ..... Enc Gje, 0zjan]

· Linear Combination : Va
.
bER

also + G,x+.... +2nx) + b(Bo + Bax + .... + Bnx)
= Zajtbj

· Zero Polynomial : Let 2j = 0 Vj
Note : Also works for Kn[X]

2) Functions :

F((a , b] ,
1) : set of real valued functions

f : [a
, b) -> R ([a , bJER is an interval

· Linear Combination : For f ,geF([a,
b)

,
1) and x

, BER,
define function

(f + pg)(a) = x + (a) + pg(x) Vx[a, b]
· zero function: &(a) = 0 feela, b)

Note : Rn[x] => F ([a , b)
,

RR)

For any n and linear combination rule in IRn[X] agrees with rule in F([a , b), IR)

3)Matrices : Mpxn(F) : set of pxn matrices with entries in IF = R or IF = C

· Linear Combination : matrix addition and Scalar Multiplication of matrices

Let A = (aju) ,
B = (bjn) , < , BEF (j , k) - entry given by

(xA + BB)jk = 29jk + Bbjk
· Zero Matrix : Open Matpxn(IF)



Definition of a Vector Space

Definition Vector Space

LetIf be a field (usually IR or 4)
.

A vector space over If is a set V together with binary
operations

rector addition scalar multiplication
vxr U FxV >

(u, v) , <(n + v) ( , v) , av

(AI) commutativity over addition

u+ V = V + u Vu
,
vev

(A2) associativity over addition

u + (v + w) = (n + v) +wVu
,
v ,we

(A3) & vector

# DEV such that Otv = r Eve

(A4) Inverse

Given any veV ,
A -veV with (-r) + v = 0

(M1) Distributivity
x(u + v) = au + Bu Va,

u ,
vEV

(M2) Scalar Multiplication

alpv) = (p)v Fa
, BEF and ver

(M3) Distributivity
( + p)v = xV + BV Va

, BEIF ,
ver

(M4) Multiplicative Identity
Iv = v EveU (where IEFF is the usual 1)

· 8 is the zero vector

· Real Vector Space : Vector Space over IR

Complex Vector Space : Vector Space over (



🔗

- A vector is an element of a vector space

· Given a vector space V over a field If, any def is a scalar

Note

i) Being binary operation implies V is closed under linear combination

Vu
,
veIF and any deff , utveU

,
drev

ii) Axioms Al-A4 together with binary operation addition is an abelian group

Examples of Vector Space

1)I" is a vector space over IF with obvious definitions of vector addition and multiplication

+ =
s

2) All examples on page 2

3) The trivial vector space 587 is a vector field over any field If

8 = 1 + 0
,
28 = 0 VeF

4) Field of order 2 (order is cardinality
IF = #2 T

Field operation : modular arithmetic

+ 0 ·O 1

00 00 0

110 101

Note : Any finite field must have order of a prime power

#F :

n
where n = phaeI , p prime

order



4) #2 : vector space of 3-dimensional column vectors with entries inFz

12 = 2 . 2 .2 = 8

E= (() · (g) · (5) · (8) (:) · () ·((
5) Diagonal Matrix Space :

Let VI be the set of nxn diagonal matrix
For 2 elements of U1.

B
V = & .......

n =J... I· in&
Addition: ntv = (c) + P e) = Cate enter)
Scalar Multiplication : EVER

, 2)*=d....
So VI is a vector space over I

Note : This is basically same as IP
, just change of notation

can show

0 :V-> 1

/" ......) is an isomorphism

6) VEV1 be the set of matrices with positive diagonal entries
Let

B Li , Bi > On =)" .... 1v=



Define "vector addition" and "scalar multiplication" by

n + v = (4848 ....
O

I
r

O

y

an
Un = I

O

E
......

· I VEIR

Recall :2 = exp(olog(j) so only makes sense for aj 0

Then U2 is a vector space

proof :

(1)n + u = (4 .......) =9...
(M3) For 2

,
XER

,
(2 +X)u = ru +X

since art
(A4) Identity :8 : In

Matrices need to be diagonal
Note : Operations from VI would NOT work on Ve since for veVz ,

need negative entries to
form-v, -veVz ,

i . e. A4 fails
· Ve is not a subspace of U1 Since &Eva not in V ,

& EV

Linear Combination

Definition Linear Combination

Given vectors
Y, .... YqEV and Scalars G

, ...dqEF,
the sum

<
,
V,

+ ... . + dqq
=

21;
j= 1

is called the linear combination



Linear Subspace

DefinitionSubspaces
A subset SEV is called a subspace (or linear subspace) of V if
(s) S + &

(52) &ES

(53) VX, .
.

., VgtS ,
a

,
v

,
+... . + AqIgES (closed under linear combination

Linear Dependance/Independence

Definition Linear dependence
A collection of vectors @ = /X, . .

., Yqb V is linearly dependant
it = (x ,

.
.

., (g) 9410, ..., 03 s . t

6
,
+ .. . + qq = G

Otherwise
,

we say YI
, ..., Vg are linearly independant

Definition Linear independence

Y
, ..., Yq are linearly independent if

6
,
k + .. . + q(a = 0 = 4 = 0....., dq

= 0

Spans
Definition Span

Let &CV be a non-empty collection of vectors.

The span of G denoted

Sp(e)
is the set of all linear combination of E

Sp(G) = [utFu = 2
, ki + .... + [In for some LieF,

viES]

By convention,
Sp(q) = 284



Basis

Definition Basis

Let SzV be a non-trivial 5503 subspace of If,
A collection B = SV1, ..., Va] &S forms a basis if

2) V, . . ., Ig is linearly independent
ii) sp(1 , ..., (q) = S

By definition,

basis of 50% is &

Lemma

For
any GCF", EFO,

Sp(G) is a subspace of F

In fact
, sp(G) is the sudest subspace of #" containing ,

i
. e.

if JEFF" is any subspace with 635
, then Sp(a) Es

Proof : See part 1

Examples of subspaces

1) Every vector space V contains a &V

Trivial Subspace : 583 [V is a subspace

2) R[X] : set of polynomials in X with real coefficients of any degree

UneN
,
Rn[X] ERRIX] is a subspace for every n

Basis : In[x] : [1, , 52, ..., sa]

"degen
Basis for RIX) : [1

,
x

,
c

,
... 3 infinite basis

3) Matrices :

MpxF) : vector space of pxn matrices



Standard Basis :

SEjk 15 jIp ,
I'k[nY where Ejp is the matrix with 1 in jk-entry ,

O elsewhere

4)MF) :

El (88) E2 =(8)

F = (08) E2 =(89)
5) Let G([a ,

b]
,

RR) be the set of continuous functions : f : [a
,
b) < R

Then G)[a , b) ,
RR) = F ([a , b)

,
RR)

Identity : The 8 function : 0 : [a , b) -> I

f(x) = 0 Vxc[a , b]

is constant
, hence continuous

Linear Combination : If f , ge@)[a, b)
,

RR) < F([a , b]
,

RR)
,
then

xf + Bg = F([a ,
b)

,
RR) is continuous

=> af + Bg(G)(a , b))

Hence G([a , b) ,
RR) is a subspace

6) Let I([a , b]
,

RR) < F([a
,

b)
,
R) is the set of all integrable functions

f : (a
, b] -> IR

such that integral

/"f(x)dx exists

Q is integrable
Linear combination of integrable functions is integrable
Hence I([a ,

b)
,
1) = J-(ta, b)

,

IR) is a subspace
continuous functions are integrablee.

c([a , b)
,

RR) is a subspace of I([a , b) ,
IR)



Note : Rn[x] = RIX] = GS[a
,
b)

,
RR) = I([a , b) ,

1) < F([a
,
b)

,
IR)

These are all I as add

7) In F(IO ,2x) ,
1) are s

,
since)

,
e linearly independent

Consider <x + Bring + re = O

Need to hold for all seto ,2a]

At x= 0
,
re= 0 = v= 0

=> <x + Bsin(x) = 0

=> < + Bcos() = 0 differentiating
x = = 0

Hence

Bsin(s) = 0 Vee[o , 2x] => B = 0

R[x] = c([a , b)
,
(R) = I([a , b)

,
1R) =

> F(la , b] ,
IR)

mem
can't have finite
basis

Aside : Basis for (([a . b)
,
IR) ?

Can'tuseTaylor series ; not linear combinations ofd1... since linear combinationsare

upshot :

every vector space has a basis
,
but can be impossible to describe it foro dim spaces

Dimensions

Definition Dimensions

For
any subspace

S-V
,

we define dimension of s by
dim(s) = #(basis of 5) cardinality

Theorem

LetVbea vector space of over F with a finite basis. Then every basis of V has the same numbera

Note : Steinitz Exchange Lemma holds for any vector space with a finite basis



Properties of dimensions and basis

Lemma

Let V be an n-dimensional vector space SEV be a subspace. Then I has a finite basis .

Let q= dim(s)

(0) Every linear independent set of vectors S
..., EYCS can be extended to a basis

of

(2) Any linearly independent subset G has no more than a elements

(ii) Any linearly independent subset G-F" can be extended to a basis of IF

(ii) Any finite spanning set fors contains a basis of

Hence no subset containing fewer than q elements span s

(iv)Any linearly independent subset of containing a elements span s so itisa

Similarly if a set of size a spans) then it is linearly independent and its
A basis.

(v) Ifa=0
, then S = Se3. If gen , then S="

Examples :

i) In[X] : no dimension
,

since it has basis &1, x, .... any

ii) MpSE) : has dim p.n ,
standard basis

iii) Let V = Mcx2IR)
SEV : Symmetric matrix is a subspace

proof :

i) VA
,
BES

,
C

, BERR

(A + pB)" = CAT+ BBT
= CA + BB symmetric => A= A

=> LAtBBES

ii) Onyn is symmetric => DES



Mcxz)IR) has dim4 = dim(s) = 4

we can write elements ofS uniquely as

(48) = c(58) + p(25) + v(89)

=> B = ((85) · (95) · (80)] is a basis for

=> dim(s) =3

Another way to see this
,
is

(8)
has 3 free variables => 3 basis and dims = 3

wecanextendbasisofs toV by adding one more linearly independent matrix .

To findas

MySp(B) => M - S

=> M is not symmetric

Let M =

any
matrix outside s

, example

Fi-Ec = (5) Fiz=(8)



DIRECT SUMS
Direct Sums

Definition Sum ofSubspaces
Let V be a vector space

Let Sz, ...., SqCV be subspaces. Then sum

SatSzt ... t Sq = Sp(szu .... Usq) = E, + - ...+qq SjfF, jesj]

When

sin(z) = 18 V1j

we call this the direct sum denoted

S 50 ... Sq = Sj

Theorem

For
any subspaces St . ..., Sqet
i) Sy 1 .... 1Sq is a subspace

(ii) Sy +... . + Sq is a subspace

Proof : Part 1

Lemma

Let Je , Se be subspaces of vector space V . Then

dim(S1+S2) = dim(S1) + dim(2)-dim(s11Sc)

In particular for direct sum

dim(s10S2) = dim(s1) + dim(sz)

Lemma

Let S2Sz .... DSq be a direct sum of subspaces and

vjesj [03 (non-zero) for j = 1
,

. . .

.. 9

Then F,...., q
are linearly independent



 LINEAR MAPS
Definition Linear Maps

Let V
,
W be vector spaces over the same field IF.

A map L : V -> W is called linear map if

((xu + By) = x((u) + pL(X) Va ,Bel, Unive

In abstract algebra ,
linear maps are referred to as vector space homomorphism ,

since they
like other homomorphisms , they are structure - preserving maps.

Therefore we denote the set of all linear maps from V to W by

Hom(v ,
w)

Lemma

Let U
,

V
,

W be vector spaces over the same field IF.

If L
,
Me HomIV

,
w) and x

, BEF. Then L + BM defined by
(L + BM)(v) = x((v) + BM(v) VEV

is also a linear map.

Also if LEHom(v ,
w) and KEHom(U

,
v)

,
then the composite

Loke Hom(r ,
w

Matrix representing linear maps
Let V and W be finite dimensional vector space.

Pick an ordered basis for V and w

· (V, V, . . . . Un) be a basis for

· Iw
,, We, ..., Wal be a ordered basis W.

Thelinear map L
: V , W can be represented by an myn matrix whose jth column is givenby

((Vj) = x
, 0

,
+ det ....+MWmc() co-efficients



Examples of matrices representing Linear maps.

1) V = R2[X]

Liv U

p(x)1(p'(x)
This is a linear map since differentiation is a linear operation

(f + g) = f + g
I

(f) = 2f

Explicitly
((60 + <

,
x + <2x2) = < + 262

An ordered basis for V is

(V ,, Vz
, Vs) = (1

,
x , 55)

Calculating effect of L on basis

((v , ) = <(1) = 0 .1 + 0 . x + 0 .x

L(vz) = ((x) = 1 . 1 + 0 . x + 0 . x2

L(vs) = ((x) = 0 . 1 + 2 . x + 0 .5

so matrix representing Lis

(
jth column consists of co-efficients of L(vj) wr . t this basis

2) Let V= McKR)
L : V > V given by
L(A) = AT

We saw above
, transpose respects linear combination> L is a linear map .

Pick an ordered basis for
v= En = (58) - v = Fi = (86) = v = (08) : 24

= (82)



Calculating effect of L on basis

((vi) = v
,

= 1 .
V

,
+ 0 . vz + 0 . vz + 0 . V4

L(Vz) = Vy = 0 . v
,

+ 0 . vz + 1 . Vy + 0 . V4

L(vs) = v = 0 . V
,

+ 1 . Vz + 0 . Vy + 0 . V4

L(v4) = Vy = 0 . v
,

+ 0 . vz + 0 . Vy + 1 . V4

So matrix representing Lis

10
3) V = R [x]

Liv >V ; p(x)1 <p(
L is still linear

.

RIX] does not have a finite basis > no matrix representation.

4) V = I([a
,
b]

,
RR) and define

Liv > U

((f) = ) +(t)dt
Fundamental Theorem of Calculus tells us that

L(f) itself is integrable => ((t) V

=> well-defined map

Integration is a linear map=
> L is a linear map.

But I(Ia ,
b)

,
R) is not finite dimensional => cannot represent (by a matrix.



Images and Kernels

Definition Image and Kernel

Let L be a Linear map from V to W ; L
: V > W

Image of L : Im(L) = EwEW w =L(v) for some ver?

Kernel of L : Ker() = EveV ((v) = 03 also called null-space

Lemma

Suppose L is a linear map L
: V W

· Im(L) is a subspace of w

· Ker(L) is a subspace of

If V has a finite basis [V, ...,Y then Im(L) is spanned by
L(vi), . . .

., L(va)

Proof : proof of last part

Assume L : V W is a linear map ,
V has basis

Let welm(L) => w = L(v) for some ver

We can write v = <
,V + .... + EnVn for some G

, ..., EnEF

w = ((v) = L(d ,
V

,
+ .. .. + CnVn)

= c
,
((v

,
) +.... + an((vn)

=> weSpan(((v , ) ,
. . .

., ((un))

=> Im(2) =Sp(2(vi) ....., L(vn))

The other inclusion in the other direction is true since by definition, each

((vj) + [m(2)

So we get
Im(2) =Sp(((v ,

)
,

. . .

., L(vn)
#



Injective , Surjective , isomorphisms

Definition Let L : V :W be a linear map
· (is one-to-one (injective) ifL(a)) = 1(12) => 1 = 12

· L is onto (surjective) if U WeW EveV s .
t ((v) = w (Im() = w]

· Lis bijective if t is both one to one and onto

Lemma

A linear map ( : V -> W between vector spaces over the same field If

i) one to one - Ker(L) = 58]

ii) Hence Lis bijective when Ker() =584 and W = Im(2)

iii) When Lis bijective ,
it has an inverse

L : W sy

which is also a linear map

Proof : of (iii)

Let L
, Bel , w

, weW .

We want to show that

L'(w
,

+ Bwz) = c) (w , ) + BL" (wz) .

(* )

Apply (to LHS of (*)

2)((w
, + Bw()) = awi + Bwz

since Land L'are inverses and LoL" = In

Applying (to RHS of (*)
L)dL"(w ,

) + BL"(we)) = x((L"(will + BL)L"(wal) since Lis linear

= aw
,

+ BWz LOL" = In

Therefore ,
we have shown

2) (w , + pwell = L(g)(wil + b)(wall

Lis bijective=> L is injective
=> L(w , + Bwz) = c)"(w

, ) + pL" (we)
#



Definition Isomorphism
An invertible linear map

L : V > W

is called a vector space isomorphism

We say V is isomorphic to W denoted VEW if such a map exists

Remark : Composition of 2 linear (bijective) maps gives a linear (bijective) map
composition of a linear map is linear and composition of bijections is a bijection.

Hence

1) UEV and VEW => UEN

2) V = V via identity map : Iv : V-V ; Ir(v) = v S Equivalence relation

3) VEW => WEV since isomorphisms are invertible

Rank-Nullity
Definition Rank/Nullity
Let L be a linear map .

Rank of L ,
vk)L) is the dimension of Im(2)

vk(2) = dim(Im(2)

Nullity of L ,
null(2) is the dimension of Ker(2)

null(2) = dim (kev(L)

Theorem Rank- Nullity Theorem

Let V
,

W be finite dimensional vector spaces over same field If

For a linear map L
: V w

dim(v) = vk(2) + null (2)



Example :

Let V = W = Rn[s] and define

L : V > V ;

p(x) 1 (p'(x)

for any arbitrary p(x) <Mn[x]

p(x) = 20 + 2
,
x + dex +.. . + dnx" for some <jeIR

Then
2) p(x)) = p((x) = <

,
+ 2x2x + 323x +... + nxnx

+

=(n
- ,
(x)

=> Im(L) = Rn- ,
[x]

But note that every polynomial in Ins] can be obtained like this

=> Im() = 1n
-,
[x]

Therefore rank (1) = dim(Im())) = n

Finding Kernel

((p(x)) = p'(x) = 0 # p(x) is a constant polynomial
=> p(x) = Xo Vs

, for some 20IF

=> ker() = Sp(1) = 540d0ERY

Therefore null (1) = dim(kerL) = 1

By rank-nullity theorem

dim(v) = n+ 1

Constructing matrix , using ordered basis for V = Rn[x]

(v
,, v ,

. .

., Un + 1) = (1,, , . . ., x)

Observe that

L(vj) = ((xi + ) = (xi - ! = (j - 1 (xi = (j - 1)vj - 1

We get an (n + 1) x (n + 1) matrix wot to ordered basis



00 ... O

.

-i
rank(A) = n = n linearly independent column vectors.

null (A) = (n +1) - vankA = 1

Corollary
If V and Wave vector spaces over the same field and dim(v) = dim(w)

,
then

V = w isomorphic
In particular, every n-dimensional vector space over If is isomorphic to

"

Proof :

Sufficient to find an isomorphism 4 :Vs#" Whenever dim(v) = n

Then VEFF" and WEFF" => VEW

Take any ordered basis B = (V, ..., n) of V and define

↑
B

: V #F

↑(iv) =Z =(
checking 4p is linear

,
check addition and scalar multiplication

Addition :

4)x;+ ) = 4) stevi)

=+
=43)2j) + 4b))



Scalar Multiplication :

4(r(vi)) = 4b)(iv) = alej

=(=
= v(43)vi))

Calculating Kernel Kev (4) :

Zdjjker(4) E> 4) Zvi) : e

= (i) = (i)
# Lj = 0 Vj

Therefore

kev(43) = 583 => null (1) = 0

By rank-nullity theorem ,

vank(nm) = n => [m(4p) = IF"

since onlyn dimensional subspace of F is F itself.

Hence by Lemma on pg
18

, 4is an isomorphism
↳

Given an ordered basis B = (V, ..., Vn) ,
we define co-ordinate map

↑B : V > F
"

Yp(v , +.... + (v)= e =(
This is an isomorphism , unique for which

↑(vj) = ej

conversely vector space isomorphisms matches bases to bases. So given vector space isomorphism

4 :V.
"

its inverse 4" : v -> #" is also an isomorphism and maps standard basis (e
, ... , en) of if"

I

to an ordered basis (v , ....,
n) of V

, V = 4 (e)



CHANGE OF BASIS MATRIX

Lemma

For a finite dimensional vector space V ,
there is a bijective correspondence between coordinate

maps (isomorphism)

4 : V #"

and ordered basis B = V
, ..., un) of V

Let V be a vector space over If of dimension n; dim(v)=n

Let A and B be C ordered basis for
A = (w,

,

.

. ., Wn)

B = (v
, ,

. .

. ., Un

Have co-ordinate maps

4 :V
> #h

48 : V < #"

4 is an isomorphism,
hence invertible

45048 : Iv

Hence

40:40404
Linear map F

*
-> #F

so can represent 4304s by nxn matrix called change of basis matrix

C : from A to B

Notation : Change of basis matrix : Transition matrix from A to B

B
Ca

Writing as a matrix

4B = C4A

i . e
. 4g(v) = (4g(v)



To find matrix , apply 4904s to standard basis (e1 , .... En) of F

(40045)(2j) = 43(48(j)
= 4g(wj) since 4a(wj) = ej

=> jth column in matrix is given by co-ordinates of wj from A written in terms of
basis of B

Given 2 ordered basis for vector space

A = (w,
,

.

. .,
Wal

B = (v, ,
. .

., Unl

The change matrix is given by writing each wjeA in terms of basis B

jth co lumn wj = GjV ,
+ .. + Caj In for some 4j, ....; In

Then we see that the juth column of the matrix C is given by

Yowj) = Gjzj +... + Enjen = (
i

Multiplication by CBS converts co-ordinates w . v. t A into co-ordinates w . v . t B

4B(v) = (4x() Fre
Lemma

Let 4a and 4p be 2 co-ordinate maps on a finite dimensional vector space V,

corresponding to ordered basis

A = (wz
,

. .

.,
Wn)

B = (v, ,
. .

.,
Un

Then

4 = (04A
where C the change of basis matrix defined above ,

whose columns are co-ordinateIS

basis of A in terms of B



Change of basis matrices posess some natural properties ,
which are easily proven from the

defining equation

4p(wj)= ej

Lemma

For 3 bases A
,
B and G ,

we have

=
Since

= In identity matrix

it follows ( = (C)

Examples

1) V = Rc[X]

B = (1
,
x

,
3)

A = (1 + x
,

x
,

1 +x)

Check that A is a basis (check linear independence
2) I +x) + Bx + v)1 +x) = 0 for some < , B ,

UEF

# (+r) + (x+ p(x + vx = 0

=> L + B = 0
,

U= 0 ,< + r = 0

#a = V= B = 0

dim(v) = 3
,
3 linearly independent vectors ->> forms a basis for V

co-ordinate map for B

4
B

: V cR3

4g(o+( , x +xx) =(
To work out C ,

write elements of B in terms of A

1 = 1(1 +x) + ( -1) . x + 05

x = 0 . (1 +x) + 1 . x + 0(1 +xi)

x = ( 1)(1 +x) + 1 . x + 1(1 +x)



c
To find CB ,

either compute inverse of C or follow same method

Express the vectors in A in terms of B

1 + x = 1 .1 + 1 . x + 0 .x

x = 0 . 1 + 1 -x + 0 .x

| +x = 1 . 1 + 0 . x + 1 .x
Thus

c
Check that c Is

I=(i) =(
Since 4 = C

*

4 p ,
it follows that the co-ordinate map 4 p : V < R is given by :

Since Pa(v) = (p
*

4 (r) ,
we get

Yo : V < IR3;

↑x(o + d
,
x +a) =f)=)

Multiplication by Co takes co-ordinate vectors written in terms of B to co-ordinate vectors in
terms of A.

For a concrete example ,
let p(x) = 1 + 2x + 3,2

p(x) in terms of B :

4g(p(x)) = (2)
Multiplying by co gives us

ce()= (5) = ()
which is co-ordinate rector of p(x) in terms ofA since



( 2) . (1 +x) + 4 . x + 3 . (1 +x2) = - 2 - 2x + 4x + 3 +3 = 1 + 2x + 3x2 = p(x)
we have verified

c
*

4p(p(x)) = <(2) = (2) = 4g(p(x)

2) Let linear map on V = Rz[X] be

Liv > U

p(x)1 (p'(x)
L represented by matrix w . v. t B be

Mo() =(
Finding matrix w. r. t A

2) I + x) = (1 +x) = 1 = 1(1 + x) + ( 1)(x) + 0(1 +c)

((x) = (x) = 1 = 1(1 + x) + ( - 7)(x) + 0(1 + c)

L(x2) = (x2) = 2x = 0(1 + x) + 2(x) + 0(1 +xi)

Hence

Mo() =(j + )
Matrix representing Linear map revisited

LiV CV is a linear map and B = (V, , ..., Val an ordered basis for V ,

Matrix representing (w. r . t basis B is denoted Mp(L)
Lis uniquely determined by its action on the basis vectors of B,

so the jth column of Mp(L)
can be computed by applyingL to basis vector vj and writing co-efficients w . v .

t B as a column vector.

=> matrix obtained by applying (to v
j writing in terms of B and writing co-ordinates as

jth column. Si. e. applying 4B
&

Mg(2) : F #

Equivalently basis B gives V the co-ordinate map 4 p : V . IF"

so we take ej , apply 4 to get Vj , apply L ,
then apply 4 to get co-ordinate vector

Mp() :
44B
,v

2
, v4B/



Hence define
Mp(L) = 490204

Also use notation Mg(c) to denote matrix representing this map w . r. t standard basis of IF

These descriptions are equivalent.

ThematrixMorgivenbasBisObtained byapplying L to uj ,
writinone

vector.

We can describe this in terms of the co-ordinate map Y

so we take ej , apply 4 to get vj , apply L ,
then apply 4 to get co-ordinate in terms of B.

More concretely, since B is a basis
,

L(v; ) = AzjV,+.. .. + Anjun for some Aj, ..., AnjeF
Then Mp(L) is the nxn matrix (Aij)

proof : Recall that Mp(le; gives the jth column of Mp().

Now

Mg(2)ej = (490204)(ej)
= 4g(((4p(zj)))
= 4p(((vj))
= 4 p)AzjV,+.. .. + Anjun)

= A
,j4p(v , ) + .. .. + Anj4p(un)

= A
,jej +.... Anjej

Therefore
/

Mp)= I



Properties of matrix representing a Linear map

Proposition
Let V be a vector space over field F,

L
. L : V V be 2 linear transformations and

B be a basis for V . Then :

(i) Escalars <
, BEF ,

Mg(x( ,
+ B(z) = aMg(2 ,

) + BMg(2)
(ii) Mp( = 0() = Mg( , ) Mg(4)
In particular,

L : V . V is invertible > Mp()") = Mg()
Proof :

(ii) We use Mp(L) = 4
,0204

Hence matrix multiplication corresponds to composition of Linear maps
(and we can interpret them as nxn matrix as a linear ma ,

F FG)&

We have

Mp((z)Mp(22) = (4%z4")0(490049")
=

400 , 014949")004" composition of functions is associative

= 49% 00497
= Mp(4 ,0)

When L is invertible
,

we have

LoL = LoL" = In

Apply to above to get

Mp(L"( Mp(z) = Mg(2o(") = Mp(v) =

In) = Mg()) = Mp()
+

Mg(L)Mp()") = Mg(20()) = Mp([v) = In

(i) Mg(2) : /F" >
"

is a linear map .

We have Mp() = 40 Lop
Let beanyarbitrary columnvectorin andbethecorrespondingea-



Then

Mg(x) ,
+ p(z) = (4po(x4 +p()04)(1)

= (4p0(64 + B(z)04)(4p(v))
= (490(64 + B(z)04904g)(v)
= (4g0(x) + B(z))(v)

= 4g(x) ,
(v) + B((v)

= (4p( ,
(v)) + B4g(z(v))

=(49( , (4(2)) + 049)(49(1))
= <(4p0( , 043)(2) + 8(490404j)(1)
= CMp(t , )(x) + BMp(4)(x)
= (Mp(2 , ) + BMp(z))(1)

True VIEIF we have an equality of linear maps IF If

Mg(x( ,
+ B(z) = aMg(2 ,

) + BMg(2)
*

Theorem

Let Liv >V be a linear transformation ,
A

,
B be 2 bases for V. Then

Mg(z) = cgMa(L)((9)" = (3)Ma(2)(A

In particular , Ma(L) and Mp(L) are similar matrices

proof :

We have Mp(2) = 4g 0204
My(l) = 40004

Also 4p(v) = (4(v) Veu => 40 = 18048
Hence

M(L) = 4
,0204

+

= (040L0((04
= 140040

Ma(L)



= Ma(z)0()
+

viewed as linear maps IF"-> #F
"

= Ma(L)((9) viewed as matrices

Previous Example continued

V = Rz[x)
B = (1

,
x

,
3)

A = (1 +x
,

x
,
1 +x)

= (d) =
L : V < V given by p(x) 1 (p'(x)

Mp() =(
↑( =(i+ )

Verifying theorem

M(L)((99)
+

=(i) I
I=
01 0

I I O 02 I = Mg(L)
00 0

Remark : If W andV are finite dimensional vector spaces with

A = (w, . . .

., Wn) a basis for w

B = (V,
,

. .

., Un) a basis for
Then any linear map L

: W-V can be represented by a matrix



EIGENVECTORS AND EIGENVALUES

(given by linear map)
M9(2) : IF" · F ; M9(1) = 4,0204A

If A is another basis for w

If B' is another basis for

then we have change of basis formula
I I

M()= ()

Notation:
L : V + V (L : V2)

Definition

A linear map L : V?

An eigenvector of L is a non-zero vector VEV such that

L1 = X1 where XEF scalar

In this case X is an eigenvalue of L
The same definition applicable to matrices

Av = X

The set of all eigenvalues of L is called the spectrum of L : Spec L

SpecL = EXEF (-XIn is not invertible?

Indeed
(v = X (L-XIdn) = 0

Remark : Similar matrices have same eigenvalues
Example :

Recall V = R2[x]
L : V (V

, p(x) , < p()

%B = (1
, x ,
si)

Mp() = (0



Upper Triangular => eigenvalues are diagonal elements
=> x = 0

, 90 = 3

The eigenvectors are (6) = 9x
= =

Land Mg(L) have same eigenvalues/eigenvectors
Theorem

Let L : Vo be a linear map ,
V be a finite dimensional vector space over a field IF.

Then for each matrix representation A = Mp(2) of L

v is an eigenvector co-ordinate vector 1 = 4 p(v) is an eigenvector with
eigenvalue X

Moreover,the characteristic polynomialdet-A)depends only on a
G(x) of L

proof :

For B = (v,
,

.

. ., un) a basis of V

Recall that 4 p : VsIF" is the co-ordinate map which is the vector space isomorphism
that satisfies

4g(vj) =

ej

For VeV,
let V = 4 p(r)

Recall that viewed as linear maps F*
FF"

, we have

Mg(2) = 4002047
Let Xe#

Note that applying 4p ,
we have

4g(((v)) = (4go()(v)
= (4

,
02045, 04)(v)

= (Mp()04p)(v)



= Mp(L)(4p(u))
= Mg(L)(x)

and

↑g(xv) = x4g(r) = XX

so ((v) =Xv> 4p((v)) = 4p(Xv) bijective
=> Mp(()(y) = Xy

# A(x) =X

so v is an eigenvector of (with eigenvalue x E) V = 4 p(v) is an eigenvector of A =Mp(2)
with eigenvalue x

To show <(x) does not depend on B
,

can argue that its roots are eigenvalues of Land only
depend on Lland (x(X) is monic

Alternative for A another ordered basis of V,
we saw that

Mg(2) and Mp() are similar matrices

15 an invertible matrix P = CB s .
+ Mp(2) = PMa(L)p)

and we saw that similar matrices have same characteristic polynomial (Lemma 2 .17)

Diagonalizable Linear maps
Definition

LiV V is diagonalizable when V admits a basis B for which theWe say a linear mal
matrix Mp)L) representing it is diagonal .

Recall that nxn matrix A is diagonalizable if
- an invertible matrix P for which P"AP is diagonal.

This happens when eigenvectors of F form a basis of I

Using isomorphism 4 g : V . #",
A linear map L : V V is diagonalizable ES V admits a basis B=V

, ... , n
where vj is an eigenvector



Example of infinite dimensions

If V not finite dimensional, situation more complicated

1) Let V = R[x]

For p(x) EV , define
x

((p(x)) = )p(t)dt
Note that L(p) is a polynomial in s

,
and integration is linear

No eigenvectors :

if ((p(x)) = Xp(x)
Il

&"p(t)dt
Differenting both sides and using fundamental theorem of calculus

p(x) = (xp(x))) = Xp'(x)

if x = 0 then pla) = 0 UseR => pis zero polynomial/rector
=> But 0 vector is NEVER an eigenvector so

there is no eigenvector for X = 0

if x + 0 = p(x) = Xp()
&=

-X
=> p(x) = xe" for some deR

not a polynomial
Hence spect = a



(2) v = c
*

(la , b] ,
R) : vector space of infinitely differentiable functions f : [a , b) < I

Liv > V ;

((f) =f
is a linear map on V

We have

L(eY") = Xe
Y"

VXERR

=> eX is an eigenvector of L for every XeIR

spec() = IR

(3) Legendre equation

(l-sily" - 2xy - Xy = 0
,
XER

, y a function of

Define ((y) = (1-cEly" - Cay' => by properties of differentation Lis linear

could view L as a linear map on the space (P([a , b) ,
RR)

Then Legendre equation becomes

((y) = Xy Can eigenvector problem)

If y is a polynomial of degreen , then so is (1-s)y"and-Cay ,
we restrict (to Rn[X]

Y
L : Rn[x] -> Rn[x] is a linear map

finite dim
L(y) = Xy an eigenvector problem

Represent (by an (n + 1) x (n + 1) matrix

For example if n = 2
,

use B = (1 , x
,
si) for V = RIX)

(1) = (1 -c)i - 2x) = 0 = 0 . 1 + 0 . x + 0.

L)(x) = (1 -ci(x" -2xx = -2x = 0 .
1 + (-2) .x + 0 .x

L(i) = (1 -x2) (si)" - 2xki) = (1 -ci)2 - 2x2x = 2 - 6x = 2 . 1 + 0 .x + ( 6752

So w. v. t B
,
L is represented by the matrix

A = Mp() =

18



Eigenvectors
- ),)(i)-(0) =[

=>(x=
so eigenvector of A , Xs = - 6 is vs =(
similarly for x ,

= 0
,

v
,

= ( %)
x = - 2

. vs = (
To get corresponding eigenvectors of L ,

we apply 4

4g")(j)) = = .
1 + 0 . x + 0 .x = 1

49)(ji)) = 0 . 1 + 1
. x + 0 .x = x

4)) .
4)) = 1 . 1 + 0 . x - 32 = 1-3

Get eigenvectors
p. (x) = 1

, P2() = x
, p,
() = 1- Legendre polynomial

customary scaling ps(x) =

+ (3x
- 1)

Matrix A is diagonalizable since has 3 distinct eigenvalues
=> L is diagonalizable

Canalso seesince p ,
(x)

, p() , p() are linearly independent in x s they for set

4 = (6 %) P"Ap = (000



DUAL SPACES

For higher n
, keep same eigenfunctions and get new ones

e . g for n =3
,
also have eigenvalue x = -12 => eigenvector vy =(

=> py(x) = -Jx + 5 (0V + (52 - 3x)rescaled)
Legendre polynomials are orthogonal (inner product is 0

Linear Functional

Definition Linear Functional

For a vector space V over a field F,
a linear functional is a linear map

Liv < #F

i . e. an element of Hom(v , #F)

Dual Spaces

Definition Dual Spaces

The space Hom(V ,
F) of linear functionals form a vector space over i called the

dual space of V denoted V
*

Example : V = R3 (column vectors

V = R3 (column vectors)
,
then V

*
can be viewed as vow vectors since these "act" on

column vectors by matrix multiplication

Matrix multiplication is linear and outputs in R

(y ., ye , 43)(i) =

y ,
x

,
+ y2xz + ygxy ER

standard basis for V = R : e
,
= (b) en = (i) = =(

Dual basis for
*
is + =

= (100) +2010) +o 100

29
+ , (a) = (100) (b) = 1 f ,

(2) = 0

f , (d)



Isomorphism between V and V*

for finite dimensional

Proposition
Let V be a finite dimensional vector space ,

basis B = V, ...., n)

Then V
*
has a basis given by linear functionals

vj
: V . #F

vj
*
(vi) = Sji for j =

1, ..., n

Hence dim(v) = dim(V* ) and VEV* Lisomorphic
An isomorphism is given by the linear map

L : V > V
*

((vj) =

vj
*

for j = 1
,..., n

proof :

*
To show v form a basis

,
we need to show they span

*
and they are linearly independent

so need to show that every linear functional fiv > # is a linear combination of v
,*, ..., Un

*

Every linear map f is completely determined by action on v
, ... Un

Define

U = f(vj) where vjeV for j = 1, ... n

claim: f=
This is because

(*

(v)= (v)==

same action on all basis vectors hence have same map spans V
*

Have seen that each F : V If in V
*

is a linear combination of

v
,*, . . . . Un

*

=> v
,*,...., Un* Span V



linearly independent : Assume Ax, ...., ne F s .
t

ZO map :
O (v) = 0 Evev

Then (Zjv*)() = &(vi) = 0=>
=>Zj =
=> 2 = 0 VK

Hence linearly independent and span V forms basis

dim(V
* ) = n = dim(v) number of elements in basis

v
,

V
* vector spaces over same field with same dimension => isomorphic VEV

*

corollary 4921
If B = (v

, ,
. .

., Un) and B* = (v
,*, ..., Un

* )
,

we have 2 isomorphisms (co-ordinate maps)

4p : V + #" ; vjHej

4
g
*: V

* <IF" ; vj
*

1 < ej

So isomorphism L : V + v
*

given by
Liv <V *

- I

*
L : V

4 B
, i

" 143
(v

*

Vj)(ej) (V *

Dual of a Linear map

Definition Dual Map

If L : V W is a linear map ,
then the dual map of L is the linear map

L*: w
*
-> V

*

<* (f) = foL for few*
In the example V = R" viewed as column vectors with V* being interpreted as now vectors and W=R

m

The linear map L : V cW can be represented by an mxn matrix A

The linear map L : W* c V
*
is represented by the nxm matrix transpose A



2. Inner Products
Dot Product in IR

In IRY
,

we can use dot for scalar) product. If a =Z and =jj =,
4j9

. =u=
The length of a is given byHal and angle between a and I given by

COSO = U.

IIIIIIIII

Properties of Rh

1) u . V = V . 4

2)(xu +Bz) - - = 2(u - w) + B(X-w)

3) llulls 0

4) (((l)# = 0

Hermitian/complex inner product on i

In K
,
usual dot product N is not useful ,

since

Ave De R

For example

n = (j) ,
v = (5)

=Pitoto = i

= it to = O but IO not like length
so we use complex conjugate z = zz (non-negative
Define Hermitian (or complex) inner product

(n
,
v) = ni =j



REAL INNER PRODUCT SPACES
Inner Product

Definition Inner Product

Let V be a vector space. An inner product on V is a function

<, ) : VXV <R

such that Fu
,
V ,
weV and VER

i) (n , v) = <v ,n) symmetry
ii) (n + v

,
w) = (n

,
w) + (v ,

w) linear in first variable

iii) (xu
,
v) = c(u , v)

positive definite
iv) (u ,u)] 0

v)(u ,
u) = 0 - u = 0

Vector space over R an inner product is also called a real inner product space (also called Euclidean
space

Examples of Inner Product Spaces

1) VneN
,
IR" with usual dot product is an inner product

() ()= = an a

Remark : Note that (ii) and (iii) imply that in any inner product space , for u ,
V , wev

,
a

,BER

(xu + Bv,
w) = x(u , w) + B(v,

w)

combined with symmetry (i) , we get
(n ,

xv + Bw) = (xv + Bw ,
n) = x(v

,
n) + B(w , n)

= x(u , v) + B(u ,
w)

=>[
,
) linear in both variables

,

i

. e. bilinear



2) V =C([0
,
1)

,
1) : space of continuous real valued functions on 10 , 1)

Define inner product

(t, g) = (j+(x)g(t)dt
we know continuous functions are integrable and product of continuous functions is continuous.

=> outputs a real number Vf , gev
=> < ) a function from UXV , R

Let f , g ,
her and deR

symmetry :

(+, g) = (F(t)g(t)dt = (
-

g(t) + (t)dt = (g , +)

Linearity : In first variable

(+ +g ,
h) = (( + +g)(t)h(t)dt

= ((f(x) + g(t))n(t)dt

= (((t)h(t) + g(t)h(t))at

= (+ ()h(t) + (g(t)h(t)dt = (+, g) + (g ,
h)

(xf , g) = (( + ((t) = (a + (t)y(t) = a(((+ )g(t) = x(+, 9)

Positive

definite: PO since HtO VO,

#t
(+,+) = (H(t)) = 0 () + (t) = 0 V+ to , 1) since (f(t))= 0



Remark : proof did not rely on [0 , 7)
,
define inner product on cla ,

b)
,
IR) by

(t , g) = (4+ ( + )g(t)d + ac

3) V = R3
, product given by

< (ii) · (ii)) = Ja , y ,
+ 2042

symmetry : ((S)) · (ii) = Soy ,
+ 2xey

= sy, + 24x = ((y)· (ii)
Linear in first variable : (ii) + (i) , (2) = S(x, + y ,

)z ,
+ 2(x2 +ye)z

= Jx
,
z

,
+ 2xz2 + Sy ,

z
,

+ 2y272
= (iii) · (i) + (ii) · (i)

(ii) · (ii) = ((E) · (ii) = slacly ,
+ clolya

= 23x , 7 ,
+ C2542

= C(3x , y ,
+ 2x2yz)

Positive definite : (() , (i) = Sai + 210 as OVER

(ii)(i)) = 0 #S =00;



Norm of a vector

Definition Norm

In an inner product space V ,
the norm (or length) of a vector v is

-II vll = (v , r)

where non-negative square root is taken

Remark : The norm is a map
Il . 11 : V CIR but is NOT a linear map

For xeR
,

veU
, Klavll = Karav) = tr

= a llv11
,
not allu

Unit Vectors

Definition Unit Vector

If a vector ver has norm 1

Ilvll = 1

then v is called a unit vector

If VO is any non-zero vector ,
vector

y

II VII

has norma , is a unit vector

Examples of Norms

1) In C(10 ,
17

,
12) with inner product

(t , q) = !+ (+ )g(t)dt

vector f(x) = x has norm 11fll=f)

(t ,f) = (j+ (t) + (t)dt = (+ dt= =



BILINEAR FORMS

=> Ilf ll = 1

5

Hence f(x) = Ex is a unit vector
Ilf(x)I)

2) V= R" with inner product

((S)) , (y)) = 3x , y ,
+ 2xyz

Vector v = (0) has norm

Ilvll=0 . 0 + 2 . 1 . 1 = E

== (19) a unit rector

Definition Bilinear Forms

Let V
,

W
,

U be 3 vector spaces over same field IF. A map

fiVxw , U

is said to be a bilinear map if it is linear in each of its arguments.

In the special case where V = V
,
U=F, a bilinear map

f : VxV > #

is called a bilinear form.

In detail, a bilinear map fiVxV If that satisfies Vu ,
V

, weV ,
xEF

i) (n + w
,
v) = (u

,
w) + (v , w)

ii) (an,
v) = x(u

, v)

iii) (n , v + w) = (n
, v) + (n , w)

iv) (u , av) = x(u , v)



Examples of Bilinear Forms

1) V=
3

,
a bilinear form that is not an inner product is given by

f : VxV < /R

+ (ii)e(2)) = 3x , y ,
+ x , yz + 2x2yz

map bilinear ,
but not symmetric not an inner product

2) V = 12

g
: VXV < R

9)(ii) , (2)) =3
, y+ Eye

This is bilinear , symmetric,
not positive definite

Matrix representing a bilinear form on IR"

Proposition

A map fix" < R is a bilinear form

#
= AtM(R) such thatnn

f(u ,
v) = uTAr Vu

,
VER"

The entries Ajk of the matrix are given by

Ajk = f(ej , (k)

The matrix A is known as the matrix representing the bilinear form of f

Examples of matrix representing bilinear form
1) V = R

Using Ajk = flej , en), the dot product represented by I2 since

Ax = + (2 ,
2) = 2. 2) = (b) . (j) = p + 0 = 1

Ax = +(22
,
2) = 2 . q = (0) . (b) = 0



2)V =R

using bilinear form f : VXV <I

↑) (ii) · (2) = 3x
, y ,

+ x
, 42 + 2x42

Ax = + (2 ,z2) = + ((b)-(0)) = 3 . 1 .1 + 10 + 0 . 0 = 3

A
, z

= + (2
,
2) = + )(b) , (i)) = 3 . 10 + 1 . 1 + 10 = 7

A
2

= + (z2
,
2) = +)(i) , (b)) = 3 . 1 . 0 + 0 . 0 + 2 . 1 . 0 = 0

Azz = +(e2
,
22) = + ))) . (i)) = 3 . 0. 0 + 1.0 + 21 .1 = 2

Matrix representing A is

A = 02) co-efficients(3

2) Similarly for the bilinear form

g
: VxV < R

=



Symmetric positive definite matrices

Definition Symmetric matrices

For any nxn matrix AtMatIn ,
1)

,
A is symmetric if

AT= A or Aij = Aji

Definition Positive Definite

A real symmetric nxn matrix is said to be positive definite if

vTAv = O V column vectors veRR"

vAv = 0 )v= 0

Leading Principle Major
Definition Leading Principal Minor

For any nxn matrix
,

a leading principal minor of A is the determinant of the submatrix
formed by taking the top left kxk submatrix of A for any 1k In

a
, 1 912 ......

in

a azz ...... den1
ana. an

Lemma

Let A be a real symmetric nxn matrix. Then the following are equivalent
i) A is positive definite

ii) All eigenvalues are positive

iii) All the leading principal minors are positive (Sylvester's Critereon

Proposition

A bilinear form ),) on R"XR" is a real inner product

#
matrix representing <) is a real symmetric positive definite matrix



Examples

1) V = R2

The matrix representing dot product

F2 = (2)
I2 is real

, symmetric , positive eigenvalues -> positive definite

2) V = R2

using bilinear form f : VXV < I

↑) (ii) · (2) = 3x
, y ,

+ x
, 42 + 2x42

Represented by matrix A = (2)
Since

+)(2) · (2) = (x,x2)(82)(2)

= (x , (2)(8y ,

2+42)
= x , (3y ,

+ yz) + xz2yz
= 3x

, y ,
+ x

, yz + 2xzyz

Note : Can instantly see matrix from co-efficients

Aij = coefficient of siyi

A not symmetric => form not symmetric
=> not an inner product

Also saw B =( 2) non-positive eigenvalues
=> not positive definite



3) V = I

n : VXV < I given by

n)() , () = 202y ,
+ 1242

- 2543 - 2xzyz + ka
,y ,

KER

This is a bilinear form on IR since we can represent by matrix

(8422) real
, symmetric

0 - 2k

Positive definite :

using (iii) Sylvesters Critereon

calculating

determinanta
(1)(2) = 20

(2) 20 = 230
0

(3)200
01 - 2 = 2 ! = 2(k-4)
0 - 2k

2(k - 4) 207-1 -4207-124

Matrix positive definite > 124

Therefore his an inner product if 14



Matrix Form of a bilinear map on real vector space V

Generalise result to any finite dimensional vector space over R

Theorem

Let V be a finite dimensional vector space over R
,
let B = V, .... ] be any basis for V .

For u ,
veV

,
let u = 4 p(u) and 1 = 4p(v) (son and I are co-ordinate column vectors of

u and v with respect to B

A
map < ,

) : VxV <R is a bilinear form Famatrix AtM ) such that

(u ,
v) = uTAL Vu

,
veV

The entries of Ajk of the matrix is given by

Ajk = (Vj ,
vi)

A is called matrix representing the bilinear form >
,
) w . r . t basis &

The bilinear form () is a real inner product onV A is real
, symmetric positive definite

matrix

Example

We saw (f , g) = ff(x)g(t) dt is an inner product on infinite dimension vector space (10 ,I
,

IRS

Let V = R
,
[x]

·
Then V = CS10 , 1]

,
IR)

=> So this is an inner product on V as well.

Matrix w . r. t B = (c) standard basis

A
x

= (r
,
v) = (7

,
1) = (at = (x)) = z

A
, z

= (v
,
vz) = (

,
x) = (2 . + dt =

t

A
, 2

= Az ,
is inner product is symmetric

Azz = (v2
, v) = (x

, x) = (t. + dt =

1



We get matrix

A = (iv"is)

check this is positive definite using (iii) using Sylvester's Critereon
2

Fis
(1) (2) = 1

12) " = 0

Check matrix represents < ,
) :

A polynomial inR ,
[x] has form

Go + &
,
x

, Go ,
d

,
ER

4g(20 +a
,
x) = (9)

(f ,+ ) = (0 +a
,
x

, 20 +a,) = )(0 + a+Pat

= /o + 220dt +did

= [at + Sod ,
t +2+ 7

= 28 + 20d ,
+ 12?

104)(ii)(0) = Kod .
) (0 x)

= co + God ,
+ + d



Matrices Representing the same bilinear form

How are matrices representing the same bilinear form with respect to different bases related ?

Proposition

Let V be a finite dimensional vector space over R and let f : UXV < R be a bilinear form.

Let A and B be2 bases for V.
Let B be the matrix representing + w . r. t B and A be the

matrix representing + w .r. t A.

Then I an invertible matrix I such that

B = PTAP

In fact ,
we have P = C& the change of basis from B to A

Proof :

IfAp = 4 p(u) = = 4 p(v)
*

A
= 4g(u) =

a
= 4g(v)

Then

*
A

= 4a(u) = (44904g)(u)
↳

= (n)

=
Hence

(u ,
v) = ujA +

a
= (B)A((p)

= A

B
*

Definition Congruent Matrices

Matrices A and B that satisfy the condition

B = PAP

for some invertible matrix I are called congruent matrices



Important !!!

show that if A ,
B congruent then

i) A symmetricB symmetric

ii) A positive definite #) B positive definite

Congruence is a equivalence relation on matrices



COMPLEX INNER PRODUCT SPACES
Definition Complex inner product spaces

Let V be a vector space over C
.

A Hermitian inner product on V is a function

(
.
) : VxV = D

such that Fu
,
v

,
wEV and LeC,

i) (n ,
v) = (v

, n) Hermitian (conjugate) symmetry
ii) (u

,
v + w) = (n , v) + (u ,

w)

iii) (u , av) = <(u
,
v) VaeK

linearity in second argument

iv) (u , u) = 0 (in particular (u , n)[Reo) positive definiteness

v)(u ,
u) = 0 = u = 0

Recall :

1) Complex conjugate
For any

Ze
, Zestiy

z = x-iy- complex conjugate
2) z

,
+ zc = z

,
+ zz

3) z
, zz = z

, zc

Recall : For (
,
) : VXV C

,
a Hermitian inner product

u
,
v

,
weV

,
xe

1) (n + v
,
w) = (w

,
u +v) by (i)

= (w
,
n) + (w +u) by (ii)

= (w
,
n) + (w

,v) since z
,

+ zz = z
,
+ zz

= (u , w) + (v , w)

2) (u , v) = (v ,du) by (i)

=a(v
, n) by (ii)

= [ (v , n) since z
, zz = E

,E



= I(n , v) by(i)
Norm in a complex inner product

Definition Norm

Let V be a complex vector space

The norm (ov length) is a function
11 : Il : V > Ro

IIvll=rv)

Vectors of norm I are called unit vectors

Note : Norm is NOT linear

llavll = 1xIllvl

Hermitian inner product using matrices

Definition Conjugate Transpose
For any pxn matrix

A = (Ajk)
,

we define its conjugate transpose to be

At = (A)T

i . e.

A (Axj)

Definition Hermitian

We say a square matrix A is Hermitian when

At= A

and positive definite when utAn > O for all u



Theorem

Let V be a complex finite dimensional vector space ,
let B = (v, ..., ) be a basis for V

An operation (,) on UXV is an Hermitian inner product

#
A a Hermitian positive definite matrix AEMS) for which

(n
,
v) = u

+
Al

VuveV,
where u = 4p(u) and V = 4g(v are the corresponding co-ordinate (column vecoas

The Aji of entries A are given by

Ajr = [Vj ,
vi)

Note : A is real - At = AT

Symmetric matrices are Hermitian
,
not vice verca

Examples of inner products

1) V =C
,

(z , w) zw

Note that (z
,
z) = EZ = IZPER

>o

2) Standard Inner Product on I" :

V =

"
:

(i)() = x , y+... + xnyn= y :

checking axioms :

(i)(() , (i) =

y ,0, +... + yan

= x , y ,
... - + knyn

= x , y ,
+ .. .. + xnyn

= (i)(



(ii) (iii) same as IR"

(iv)

(() ,() =x

= x
, + .... + an ERz0

and x, .... + an =0 x = 0, ...., an= 0

Matrix representing (,) = In

(n ,
v) = n

+
In1 = u+

3) The space of continuous functions G)[0 ,
1)

,
()

fito , 1) < ( (10 , 1][R)

with inner product given by (f, 9) = () + (t)g(t) at

4) V = C with inner product

((i)) · (4)) = Soy+22

Matrix representing (,) : by looking coefficients

(: 2)
Theorem

All eigenvalues of a Hermitian matrix are real.

Proof :

Au =Xi = (Ai)"= (xi)t
=> itAt = Xit

=> T*tr = Jet i multiply both sides by I

=> Ar = it At= A

=> *xi = xi+

=>x+i = i+ v

↑+ + 0 since + 0 = X = = X + 1 #



5) Consider

A = (2)

#= A= (i) = (ii)= (, 2) = A

=> A Hermition

In fact lemma on pg 49 still applies in Complex case

Using (iii) Sylvester's Critereon

(
(1) 2 = 2)0

(2) 2i = 2 + i = 1)0
- i 2

so matrix positive definite

=> (u
,
v) = A defines inner product

)ii)() = ( , :2)(2)) (2)
= 25

, y ,
+ i c

, y 2
- is2y ,

+ 25242



CAUCHY-SCHWARTZ INEQUALITIES AND METRIC SPACES
Let V be any inner product space (real or complex)

Theorem Cauchy-Schwartz inequality
If u and v are any vectors in an inner product space V

,
then

(n ,
v) [ KlullIlvl

Proof :

Let V be any real inner product space.

For
any weV

,
(w

,
w)?

Let w = an + Br where < =
- (n

,
v)

, B = (u , n)

Then $30 and

(u + pv ,
cu + Bv) = (u

,
cu) + (xu

, Bv) + (Bv
,
an) + (v , Bv)

= (u
,
u) + xp(u , v) + pa(v , u) + P(v , v)

=2B - B -B + p7(v ,
v)

= B)(n , u)(v , v) - (u ,v)

If p =0 > u = 0
,
then Cauchy-Schwartz inequality trivial.

Otherwise &30 => B) (n , n) (v , v) - (n ,v) =

=> (u , n) (v , r) > \n ,
03

=> (n , v) =Mun)Triv) (non-negative square roots)
=> <u , v) =llullIlvl

Let V be a complex inner product space. For
any
wel and

(w
,
w) - 0

Let w = an + Br where < = - (u
,
v) and B = (n

, u) , BER , B10. Then

(u + Bv ,
an + Bv) = x(u

,
u) + B(u ,v) + ja(v , u) + EB(v,

v)

=xx(u
,
u) + =B(u , v) + Bc(v ,

u) + p(v , v)

= (x(u ,
u) + B(u , v) + px(v ,

u) + p(v , v)

= ap + =B) -c) + pa) z) + p2(v , v)



=- B( + p2(v,
v)

= p) - (P + p(v,
v)

= B((n ,n)(v , v) - (n
,
v)")

If B = (u
,
u) = 0 = u = 0

, Cauchy-Schwartz inequality is trivially true ,
both sides O

.

Otherwise 30 and (u +Bv ,
xn + Bv) 20

,
so we have

(n
,
u) (v , v) - (n ,v)230

.
= Kn ,

v)R = (n ,
n) (v

, v)

=> Kur)) > KulIIv/l (non-negative square voots)

Triangle inequality
*

Theorem Triangle Inequality
If V is an inner product space,

u
,
veV

, then

1In + ull = Klull + IV

Proof :

i) Over R : By definition

(lu + v(k= (u +v
,

u + v)

= (u , n) + (u ,
v) + (v , u) + (v , v)

= ((u(k + 2(u , v) + 11v113

Ellu/P + 211ullIlvll + llvCP Cauchy-Schwartz inequality
= ((( ull + 11011)

Taking non-negative squareroot

(In + ul1 = (lull + 111

ii) Over I

1(u + v(l = (u + v
,

u + v)

= (u , u) + (u
,
v) + (v ,

u) + (v ,
v)

= llu(k + (n , v) + (u ,
v) + 1v11

= 11 ull + 2Re((u , v)) + 11vIP since z + E = Re(z) VzeC

- (lu/k+ 2)(u ,v)) + 11vIP since Relz) = (z) Vzek



- llulP + Clu/IIIvIl + llvlP by Cauchy Schwartz inequality
= (Inll + 11v11)

=> ((u + v11 => (Inll + 1v11)3

=>In + 111 = Ilull + llvl non-negative square root M

Cosine Angle
On real inner product space

- IIn/IIIv11 <u
,
v) EllalIIIIII

=> - 11 (u , v) = 1

II all IIVI

Can use this to define the cosine of the angle between u and

cos8 = (n ,
v)

KlullIIVI



Metric on an inner product space

Definition

In any inner product space V
,
the corresponding metric or distance function is a function

d : VxV > I

d(u
,
v) = 1lu - ult

The metric on an inner product space V satisfies

Fu , v , weV :

i) (positivity) d(u ,v)=

ii) (symmetry) d(uiv) = d(v
,
n)

iii) (triangle inequality) : d(u ,w)(d(u , v) + d(v , w)

iv) d(u . v) =0 > n = v

Remark : We defined norm with help of inner product. Then used norm to define a metric.

Emetric spaces ? = normed spaces= Sinner product spaces ?

Y
vector space for which a norm is defined

Examples of normed spaces

In R
,
with dot product

it v = (i) ,
n=)

Ilvll = it ... ten

din, l=(y ,
- x ,)+... + (yn -xn)2 standard Euclidean metric



ORTHOGONALITY
Let V be an inner product space

Definition Orthogonal
Two vectors u

,
v of an inner product space are said to be orthogonal iff

(n , v) = 0

Orthogonal vectors denoted bya v

Orthonormal Vectors

Definition

A sets of non-zero vectors in an inner product space is said to be outhogonal if
u IV for all distinct pair of vectors in S

(vi
, vj) = 0 ifjVvivie)

If all Ges is a unit vector , then S is said to be outhonormal
.

Note if (u , v) = 0
,
then (v ,

n) = 0 since (n ,
v) = (v , n) (overR)

(v , u) = (n , v) = 0 = 0 Cover ()

For any veU , we have (v , 8) = @ since

(v
,
) = (v

,
w -w) for Ewew

= (v ,
w) + (v ,

- w)

= (v , w) - (v , w)

=O

Similarly (0
, 1) = 0 Ever

=> vector orthogonal to every vector



Theorem

Any outhogonal set in an inner product space V is linearly independent.

Hence V has dimension n and s has n elements
,
S is a basis on V

Proof :

Suppose SEV,
subset of non-zero rectors veS v & in V such that

(n
, v) = 0 Fuives

,
nu

Let V, ,
.

.

., Vi be 12 distinct vectors in S

S = Ev , ,

. .

., vi4

Suppose Ex , , . . ., Int #F s. t

2
,

v
,

+ .. .. + GnVn = 0

Take inner product with vi

0 = (vi
,
b) = (vi ,

x
,

v , + ... + (vi)

= (vi
,
<

,
v

,
) + .. . + (vi

,
(i) va)

= C
, (vi , v

,
) + .. . + dis(vi ,

(a)

= xi(Vi
,
vi)

Since vi+0 ,
(vi

,vi) 0 > i = 0 Vi

=> v, linearly independent.

Note : if (v , ,
. .

., n) Orthogonal basis for V,

Then any
veU can be rewritten as

v = < ,
V

,
+... t nUn for some X, ..., neF

Easy to find co-efficients <i

(vi
,
v) = (v ,,v) = (vi

,
d

,
v

,
+. .. + knVn)

= x
, (vi ,

v
, ) + . .. + kn(Vi ,

vn)

= xi(Vi
,
vi)

=> di = (vi ,
v)

11 v ; 112



Examples

1) In R" (with standard inner dot product
The standard basis is outhonormal

2) In 13, with standard inner product

(i) . (i) . (i)
form an outhogonal basis but not outhormal since not normal

can get orthormal basis by dividing each vector by norm

1)1 + i = 5 = (

1) (i))) = ++ = m =

1l()1) : (+ b) =m=
3) In $2 (with standard Hermitian inner product)

El F
form outhonormal basis

(() =+ = 0



Orthogonal and Unitary Matrices

Definition Orthogonal/Unitary
We say a real matrix QEMnxn(IR) is orthogonal when

qQ = In(Q" = qT)

We say a complex matrices P-Mn() is unitary when

p
+

p = In(pt = p')

Lemma

i) A basis V...... Un of IRV is outhonormal for the standard real inner product

#
these are the columns of an orthogonal matrix Q.

ii) A basis V....., Un of CV is outhonormal for the standard Hermitian inner product

#
these are the columns of a unitary matrix Q.

Proof :

1) On RY ,
we have (vj , v ) = vjFav = vjTV

↑
dot product

Basis orthonormal #) viv = Sjn (like matrix multiplication

↓o the vi are columns of a matrix Q with QTQ : In

2) Similar for I
*

Remark : Orthogonal matrices preserve the standard real inner product on R

Let Q be an nxn orthogonal nxn matrix
,
u,veR

(Qu , Qu) = (Qu) "In (Qu)
= (Qu)TQu

= uTQu
In

= niv = (n
,
v)

= (n , v)



Similarly , unitary matrices preserve standard Hermitian inner product on I"

if PeMuh) is unitary ,
then

(Pu ,
Pr) = <n , v) Vu

,
red

Example

writing last example in matrix form

(9 = I orthogonal manas

P =(Y) unitary matic

Projection of a vector

Definition

Let V be an inner product space ,
let neV be a non-zero vector. The vector

proju(v) = (u , v) u

(u , u)

is called the projection of v in direction of n or projection of v onto sp(u)

In IR
?

7
W " Note v-proju(v) In

>4
projuv

Lemma

Suppose that J = Ew, ... wil is an orthogonal set in an inner product space V and that v is any
vector in V

.
Then the vector

w = v - [proju(v) = ve wir
is orthogonal to each vector in S and consequently to each vector in the span of S in V



Proof

For each j = 1, ...., K
, we have

(wj ,w) = (wj ,
v - [proju ()

= (wj , v- (wir

linearity
= (wj , v) -[ (wj .C

linearity = (wj , v) -[Swiv Sw,

= (wj , v) -

(w (wj,w;) s orthogonalta

= 0

=> w1Wj for each wjes

If neSp(s) then Ediw ; for some Lie

so (w
.n) = (w [diwi

9

=
= 0 => wIn for each nesp(s)



GRAM-SCHMIDT PROCESS
Theorem

Any finite dimensional inner product space V has an outhonormal basis

Proof : (Algorithm ,
important)

Start with any ordered basis (n ...., un) for V
. Define

For each j = 1, . . .

., K
,

we have

V1 = Uz

vz = 42 -

proje
,

(2) = uy- Gua- i

v = us
-

proju ,
(us) - projuz()) =

us
- [projus) =

us- in
:

~
n

= un-proj(n) =un-
Then (v, , ..., ) is an orthogonal basis for V

Indeed for 11K En
,

we have

v = up- in
Rewrite as

4 = v+
= F scalar

So any up can be written as a linear combination of the vj with jCK

Since U ,, ... Un Spanuv, ..., In Span v

=> Ev
, , ..., Unh is a spanning set of size n and dim(v) = n

=> a basis for U

By lemma 7 . 33 vi is orthogonal to v, , ..., VI-

Final step : normalize vectors

↑ = Vi is a unit rector => (v, .., n) is an outhonormal basis
II Vill



Note : Gram-Schmidt process depends on ordering of ..... an

change orderre different orthogonal basis

Example applying Gram-Schmidt process

1) Use Gram-Schmidt process to turn the basis

n = (b) . u
= (2) , us = (i)

into an orthonormal basis for IRS,
,
standard inner product (dot product)

i) v = u ,
= (b)

ii) ve = u2
-

proju
,

(2) = u2- Cu,

= (2) -
(i)() (d)
(d) : (d)

= (2) - x))
-

==E
iii) vs = us

- projy(s) projucIns) = us- [Vv , Cus,On

= (i) -(i)(6) GGE
=



Normalising

-
= (i)
=

2) Use Gram-Schmidt to construct orthonormal basis forI

starting with

n = () + u = (i)
w . r. I standard Hermitian inner product

v = u
,

= ( ,)
v = 42

-

proj
,

(2) = u2
-

[ = ()- (i)

= (2) Iii

Ev
,
val is an orthogonal basis for

2(il (i)
= (i)

Normalizing
IIvill =Pit

,
(i) = E

IIvell = Mt. H = til : E

= ~"
S,2) is an outhonormal basis



3) Legendre Polynomials
V = Rz(x]

u ,
= 1

, uz = x
, uj = , up =x Istandard basis

Use Gram-Schmidt process to get an orthogonal basis w . r
. t inner product

(t
, g) = ( +(t)g(t)dt

Pz = 41
O

42 = u2
-

projp,

(42) = u2
- (p,, nz)p ,

= x - (4 + d+

< p , , 4,
) · 1 = x

I, i at

43 = us
-

projp
,

(c) - projp() =c( Fat
. 1 -

(it . +d+
x = x -

y

?,1 . 1 d+ It . +dt

44
= x-

3

We get scaled Legendre polynomials
Istandard scaling redefines In (1) = 1)



Calculations with respect to an outhonormal basis

Theorem

Let SV
, ...,

Und be an outhonormal basis for an inner product space V over a field If (Rord)

For n,veV ,
let u = divi ,

v= iri for somedi

Then

S
IF = IR

i (4 . 1)= IF = K

ii) (Parseral's identity

Ilul= IF = IR

SZiP F = e

Proof :

If = Edivi v =Ziri
Then

xi = (vi
,
u)

If F = R :

(n
,
v) = (u , [Bivi) = [Bi(u , vi) by linearity in second argument

= Zi(vi , u) symmetric

=Epidi
= Edipi

i = 1

so llul = (n , n) = didi=
Similar forC

*



Example

v = C([-X ,
x)

,
R) and inner product

(t , g)= )g(x)

Given an outhonormal set S , cos(2)} in V
, find

Sindx without computing antiderivative

St , cos(l] orthonormal basis for subspace W of V given by
w = Sp(z , cos(2x)

2) also an inner product on W.

We have sin"x = Isini)

Sin = 1-coska)= ((((2x)
2 & 2

sosintdx = (sin , since

= IIsinal
= ((( + (4)

=



PROJECTIONS

Projection maps

Definition Complements / Projections
Let V be vector space ,

UIV a subspace

i) A complement of U is a subspace W of V such that

V = UW

andVveV can be uniquely written in form

v = utw with neU and weW

ii) For V
, U , W

,
the unique linear map

Liv : U ;

L(v) = u FreU

is called the projection onto U along w

iii) Furthermore L : V V be a linear transformation. Then given a subspace U of V
,
L is called a

projection onto U if it is the projection onto U along some complement of V.

iv) L is called a projection (map) if L is a projection from V to V for some subspace U

Lemma

Let L : V-V be a linear map. Then

L is a projection E > = L

Proof :

# If L is a projection onto V along W
,
where V = U W

Then any Ever, ventw
,
new,

new

so we haveL(v) = u and L(((v)) = ((u) = u

=> ((((v)) = ((v)

=> I = L

(E) : Assume L : V-V is a linear map with =L



widentity on V

Let W = Kev() and U = Ker(Iv- 2)

Then W andU are both subspaces of V

Need to show V = U & W
,

i . e. Frew
,

we can write v as

v = n + w for some u ,
wev

and Unw = 583

Note if veUnw => veU = Ker(Iv-1) and neker()

(1) veU = KerlIn-1) => (Iv-()(v) = 0

=> I(v) - ((v) = 0

=> v - ((v) = 0

=> ((v) = v

(2) v = W = ker() => ((v) = 0 Y => v= 0

Hence Unw = 50 ?

Also each veU can be written as

v = ((r) +v-(v)

new NEW

Note that u = L(v) +V = Kev(Iv-L) since

(Iv -1) (n) = (Iv - 1)(2(v)

= ((v) - ((2(v)

= ((r)-((v) E =L

= = ((n) = u

and w = v- L(v) ew = Kev(c) since

((w) = L(v - ((v)

= ((v) - (((v)

= ((v) - 2(v)

=G



This proves that V = now

Since ((v) = ((n + w) = ((u) +2 u

=> Lis the projection from V to U along w
#

Example of Projections
R= UoW

V = x - axis

w =

y - axis

Then map f:
-> V ;

(3) (i)
is a projection of R2 onto x axis (along y-axis)
Note : (3, ) = (xjy) + (4)

Taxis The
=y

So R= V #W where U = x axis

W = line x = y

The map g:R- U

(,)" (*jY)
projection of R2 onto x-axis (along + = g)
Lemma

Every projection map is diagonalizable and has eigenvalues O and1 only



Orthogonal Complements and orthogonal projections
Definition Orthogonal Complement
If V is an inner product space and U is a subspace of V

, then the orthogonal complement of
V in V is

u
+

= (veV((u ,
v) = 0 (neu]

ut is a subspace of V

Definition

Let V be an inner product space. Let L be a projection of V toU along w

IfW = U, then we say L is the orthogonal projection from V to U.

Example.

1) V =R

U = x-axis and W =

y axis
,
then

w =j t

w . v . t standard inner product ,
since

(5)(4) = 0Va , yeR

The map f : (c) 1((() is the orthogonal projection of R onto

2) V = R2

inner product = () ()) = x , y ,
- x

, 42
-

x2y ,
+ 3242

This is a bilinear form, we can represent by a matrix

A = (i)
so (i) · (4)) = (*) A (12)

inner product since A symmetric and positive definite

Sylvester's critereon



A = (j)-
· 111 O

·

!j = 1 . 3 - ( 1)( - 1) = 10

Note (=Y Seein
so map g

: (s)1( (y) is a projection onto U along w

But ((8) , (4) =

xy
-

xy
- 0 .

y + 30 .

y = 0 Va
,ye

=> w = U
+

Hence g is the orthogonal projection onto U w . r . t this inner product

Example

Let V be an inner product space ,
ueV a non-zero vector. Then map

projuiv V Cused in Gram-Schmidt process

given by projul = <urya
so a projection from V to Sp(u)

clearly Im (proju) = Sp(r)
Also for sesp(r) ,

x = Xn for some XEFF

proju(x) = proju(Xu)
= (u ,

Xu) n

(u
, n)

= X(n ,n)u linearity
[u

,
n)

=

xu = x

=>
proje is a projection map.



3. Matrix Decomposition
QR Decomposition

Theorem QR Decomposition

If A is a real mxn matrix with linearly independent columns (i . e. vank (A) = n)
,
then A can be

factored as

A = QR

where Q is the mxn matrix with outhonormal column vectors
,
and R is an nxn invertible upper

triangular matrix

The decomposition can be found by applying Gram-Schmidt process to column vectors

u
, ..., Un of A .

Then Q consists of the columns
, ....In

Entries of R are given by

Rj = (j . un) = ( , 4) = (v) = (vi) l
(Vj , Vj)

By construction ,
R has O's below the diagonal

Example of QR Decomposition

using example on page
71

=(i) u= (2) us = (i)

A = (0=
Applying Gram-Schmidt

i =( =(=
1T

a =(Y) = I,



Rjk = (j , up) , therefore

· = (, ) =(b)
· Riz= (2) = (v

, , u2) = (v, uz) llvill = 1 .E = E2
(v

,, v2]

· Rig = (
,
us) =

/
· R2 ,

= (2
, us) = 0 · R2z = [2

,
nz) = Va · Ras = (2

,
u

,
) = 2

5
· Ry = (g ,

u
,
) = 0 · Rsc= (g ,

u2) = 0 Ray = (g , us)=

R = ( )



4. Spectral Theorems
SELF ADJOINT LINEAR MAPS

Definition Adjoint
Let V be an inner product space ,

real or complex.

Let L : V V be a linear map. The adjoint of L
*

is the linear map

L: V >

((* (u)
,
v) = (n ,

((v)] Vu
,
vey

If = L*, then we say that L is a self-adjoint linear map

Adjoint vs Dual Map

Recall that if L : V- W is a linear map, then it has a corresponding dual map

L*: W
*

>V
*

between the corresponding dual spaces , given by

L
* (f) = foL ,

feW
*

In the example ,
V = R" and W=RM

, if L is represented (w. r . t standard basis) by matrix A , then
L*

is represented (with respect to the dual of the standard basis) by the matrix AT
.

using the same notation is not a coincidence ;

Every finite dimensional vector space V is isomorphic to its dual space

VEv*

So in the case of a linear map L
: V-V

,
its dual map is L*: V

*

- VP but using an isomorphism
blw V and V*, we can choose to view the dual map L*

as a map from V to V

L*: V + V

so the dual map can be identified with the adjoint map ,
hence we use the same notation for it

both represented by AT.

Many isomorphisms between V and V*. If V is an inner product space ,
can also use an inner product

to define an isomorphism blw V and VI



Examples of self adjoint linear maps

V = IR"
,
standard inner product

Liv -V given by

:(i) where AM

matrix represent <w . r . t standard basis

Then its adjoint L*:V-V is given by

:(i)
check : n =(i)

((* (u)
, v) = (

*

))). (full
= (AT() · (i)
& standard inner product (u, v) = ut v

= ( A
T (i) " (will

= (A))) "(in)
= (x... xn)A(n)
= (n): (n)
= (u ,
Av

= (u
,
((v)

=> *

adjoint of L



L self-adjoint >L=*

# A = AT

E A symmetric
For V finite dimensional , many isomorphisms V V

* Cone for each choice of basis

If V is also an inner product space ,
can define

T : V V
*

by
T(v) = (v

, -)

i . e. T takes veU and outputs the linear functional f = T(v) Ev
*
where fir # given by

f(w) = <v
,
w) we

T is an isomorphism

Example

V = &" with standard Hermitian product and let

L : V . V be given by
: (g)1(at)

showing L is self adjoint
L is self adjoint E L = L

*

=> ((u)
,
v) = (u , <(v) Furev

Let u = (g) v = (a)
(((n)

,
v) = (2)(b)) , (a)

= )("_b) · (a))
= a + ib . c + (- ai) . d

= ac + ibc + aid

(u , ((r) = (( % ) , 2)(a))) = <(b) . (14)
= . (c + id) + b . ) - ci)



= ac-bci + adi

Expressions equal -> self adjoint

Apply L to standard basis
,
for

2

to find matrix representing L (w . v . t basis

1 (i) = (10) = (i)

< (2) = (0( + 7) = (j)

A = ( %) A Hermitian

Eigenvalues

det(x: ii) = x - X - 1 = 0

=> x =E real

self-adjoint operators vs Hermitian matrices

Proposition

Let V be an inner product space ,
Liv IV be a linear map and B be an outhonormal ordered

basis for

Then ( is self-adjoint # Mp() ,
the matrix representing (w . r . t B is Hermitian

Proof :

Let B = (V1 , ..., n) be an outhonormal ordered basis for V

Let A = Mp(L) be the matrix representing L w . v .t basis B

B = Mp(L* ) be the matrix representing (
*

W . v . t basis B

() : Recall

(vi) = j

so by linearity in 2nd argument , we have

(vi , ((vj) = (vi ,
A,VK

1) = 1



= ZAj(vi , vi) only non-zero term is [vivil-I
,

ki

= Aij
↳
* (vi) = ZBKiVi

k = 1

5

(
*

(vi) , vi) = (ZBrin , vi)
=ZB(V ,

vi) only non-zero temo

= Bji
So Aij = Eji Vij = A = A

+

=> A is Hermitian

(E) : Assume A Hermitian and B = (vz
, ... un) be an outhonormal basis of V

.
Let

Liv > U

be the linear map represented by A w . r . t A.

By going backwards direction of "" proof, we get

(((vi) , vj) = [vi
. L(vj) VvijeB

Let n.veV with n= Livi

v =Ziv, j . Bjek

Then (2(u)
.
v) = (2) divi,)

= (illvil , Ziri)

- ipj((vi) , vi)



=Z (

= (ivi <(i)
= (u , ((v)

Proposition

The eigenvalues of self-adjoint maps are real

Proof :

Let L : V + V be self adjoint

An eigenvalue X of L satisfies
L(v) = Xv for some non-zero ver

We have (v , <(v) = (v
, Xv) = X (v , v)

SinceL self adjoint ,
we have (v , ((v)) = (2(v) ,v

- (xr
, v) = (v , v)

v = 0 => (v , v) + 0 (positive definite)

=> x = X

=> XER

Diagonalizability of self-adjoint maps ,
and outhogonal eigenvectors

Theorem

A linear map LiV V on a finite dimensional vector space is said to be diagonalizable if

(1) V has a basis of eigenvectors

#
(2) minimal polynomial d. (x) of L factoring into distinct linear factors (no repeat roots



Proposition

Every self-adjoint L : V >V on a finite dimensional complex inner product space V is

diagonalizable
Proof : (by contradiction) :

Since we are working over D
, every non-constant polynomial is a product of linear factors

So d,
(x)

,
minimal polynomial of L is a product of linear factors

L diagonalizable Exd(s) has no repeated factors

If dy(x) has repeated factors,
then

d
,
(x) = (x -Xp(x) for some polynomial p(x)

Hence
d
, (2) = ( - [xPp() = 0

antity me

but EveV such that ((L-X1)p(c))(v) + 0

Hence

* (((2 - XI)p(z))(v) ,
)(2 -XI)p())(v)) + 0

Note that since Lis self adjoint , for any us , neeV , we have

)-XI) (n ,
)

, nz) = (L(ni) - Xn ,, ur)

= (L(ni) , u2) - -(u
,
nz) since Lis self adjoint and & eigenvalue

= (2(n) ,
un) - X(u

,
n2)

Of L ,
hence real

= (uz
,
L(n2) - Xnz)

= (1 ,
(2 - XI) (n2)

So * becomes

0 + ((p(z))(v) , (2 - xi)(p(c))(r)) = <(p(x))(v), 0) = 0

Contradiction #

Hence dy() factors into distinct linear factors
=> diagonalizable *



Proposition

Every self-adjoint linear map LiV , V on a finite dimensional real inner product space is

diagonalizable

proof :

Let V be a real finite dimensional inner product space

L : V-V be self adjoint

Let A be the matrix of L w . r. t some outhonormal basis of V

Then by prop pg 86 A is Hermitian (Also A is real symmetric

Let T : "+ &" be the linear map whose matrix writ the standard basis for I" is A.

Then by prop 1986 T is self adjoint

prop pg
88

, eigenvalues are real

prop pg
89 T is diagonalizable minimal polynomial dyls) is a product of distinct

linear factors

(of form x -X(IR)

d
+ is also the minimal polynomial of A minimal polynomial of L

=> L is diagonalizable
Proposition

If LiV IV is a self adjoint linear map ,
then any

2 eigenvectors of Lassociated to distinct

eigenvalues are orthogonal
Proof :

Let VI , ve be eigenvectors of (with eigenvalues of C with eigenvalues X,, Y2 ,
X, Ye

(v., ((ve) = (V
., Xvi)

= X(v
, vz)

L self adjoint

(v
., L(ve)) = <(vi)

,
ve) = <X , 4 , 2)

= -(v, ve)



= X(v ,
4) eigenvalues real

, self adjoint map

=> X
,
(v

,
v) = xz(n,m)

=> (x ,
- xz)(v ,, v) = 0

It
j

Spectral Theorems

Theorem Spectral Theorem for self-adjoint linear transformations

Let V be finite dimensional vector space (complex or real) inner product space ,
and let

Liv > U

be a self-adjoint map on V Then I an orthonormal basis for V such that the matrix representingI

L w. v.t that basis is diagonal with all entries real

Proof :

Since L is diagonalizable ,
we have

v= Ker(L-XI) eigenspace

and by proppg90,
each Kernel is orthogonal to all others.

Using Gram-Schmidt process,
we may choose an orthonormal basis for each Kernel

.

Hence
,

we have an orthonormal basis of eigenvectors for V which diagonalizes (

so matrix w. r.t this basis is diagonalizable ,
real

*

Corollary Spectral Theorem for Hermitian matrices

Any complex Hermitian nxn matrix A is diagonalizable ,
all its eigenvalues are real

.

The basis of eigenvectors diagonalizing A can be chosen to be orthonormal for the standard
Hermitian inner product on I

Hence I a unitary matrix V such that

UAU is diagonal



Corollary

Any real symmetric nxn matrix A is diagonalizable ,
and all its eigenvalues are real

The basis of eigenvectors diagonalizing A can be chosen to be outhonormal for the standard
N

inner product on IR

Hence I an orthogonal matrix Q s . t

Q AQ is diagonal

Examples

Find a unitary matrix A that diagonalizes

A=I I
A is Hermitian Es At= A

=> we can find such a matrix

Finding eigenvalues of A,

det (xI - A) = (x -2) x = 0 => X = 0
,
x = 2

Eigenspace of x = 2 : Ker(A-21) = Sp()) · (2))
x = 0 : ker(A) = sp((t))

Diagonalizable
p =(

with
44 = (8 %

But P is not unitary (since columns not orthonormal

Let u
., 42 , us be columns of D.

By prop 9 . 8
,

u
, 42 , natus (since eigenvalues distinct)

Apply G-S process to u
, 12



v
,

= u,

~ = nc-
Then [V1 . V , us] is an orthogonal basis

Normalise. Hence

v=



ISOMETRIES AND NORMAL MATRICES
Isometries

Definition Isometry
A linear map L : V CV on an inner product space V is an isometry if it preserves the inner product
-

1 . e
.

(((u)
.
((r)) = (n

, v)

Proposition

The eigenvalues of an isometry have modulus I

Proof :

~
real case follows

Let V be a complex inner product space.

Let L : V . V be an isometry
Let v be an eigenvector of L , eigenvalue X

10 and ((v) = Xu

We have

(v , v) = ((v)
,
((r) = (xv

, (v) = <X (v , v)
"

isometry = (x/(v , v)

Since v + 8
,
(v , r) + 0 => (xi= 1

=> (x1 = 1
*

Proposition

Let V be a finite dimensional complex inner product space. Let

Liv , U

be an isometry. Then there is a basis for V diagonalizing L



Spectral Theorem for isometries

Theorem

Let L be an isometry on a finite dimensional complex inner product space V
.

There exists an outhonormal basis for V relative to which the matrix of L is diagonal ,
with all

eigenvalues having modulus 1

Spectral Theorem for unitary matrices

A square complex square matrix is unitary
#

v = u
+ #) columns are outhonormal w . r . t standard Hermitian

inner product.

Proposition
Let V be a complex inner product space ,

Liv >U

be a linear map and B = (V......) be an orthonormal ordered basis for V

Then L is an isometry > Mp(2) is unitary

Lemma

An eigenvalue X of a unitary matrix satisfies Ix1 = 1

Corollary
The eigenvalues of an orthogonal matrix Cover IR) , if they exist , are I or I

Theorem Spectral Theorem for unitary matrices

Any unitary matrix V is diagonalizable ,
and all its eigenvalues have absolute value 1

.

Thebasisofeigenvectorsdiagonalizing U can be chosen to be orthonormal for the standis



Normal Matrices and commuting linear maps

Definition Normal

A complex square matrix A is said to be normal if it commutes with its conjugate transpose

AAt = AtA

Hermitian
,
real symmetric , unitary and (real) orthogonal matrices are all normal

Definition Invariant Subspace

If L : V > V be a linear map ,
U is a subspace of V.

U is said to be an invariant subspace for L if

L(u)EU VneU

This is equivalent to saying we can restrict the map L to U

LU U defined by

((n) = ((u) VueU

defines a linear map

Lemma

Let A
,

B : V <V be commuting linear operators ,
i. . e.

AB = BA

Then any eigenspace for A is an invariant subspace for B

Proof :

Let A
, B : V - V be linear maps with AB= BA

Let X be an eigenvalue of A , v be an eigenvector of X

veVy = KerlA-XI) corresponding eigenspace

AB(v) = A(B(v)

= (BA)(v)

= B(A(v)



= B(xr)

=XB(v)

=> B(v) is an eigenvector for A with eigenvalue x

B(v) = Vy

Vy is an invariant subspaces for B
#

Simultaneous Diagonalisability and diagonalizability by unitary matrices

Theorem

Let V be a finite dimensional vector space

Let dAiicI be a family of commuting linear operators VIV ,
and assume A ; is diagonalizable

for every i

Then the Ap are simultaneously diagonalizable , meaning there exists a basis of V w . v. t which
all A ; are represented by diagonal matrices

Theorem

A square matrix A can be diagonalized by a unitary matrix

#
A is normal


