


| Abstract Linear Algebra

VECTOR SPACES
To do linear combinations, we need to be able o deale and add
Examples of Linear Combinations
1) Plynostals

RN[X]: set of po\\]nomials in % with real coefficients of dejfree, i
(R,\[X} fetg ot 4o dptpd | ¢, Oé\an}

» Linear Combination: Ya,beR

& (ot it hogd) + 0Byt pt o b por)
n, -
J
= 2__0(“°‘J+ b%)ab.
e

’M7M3 Let o= 0 VJ-
Also wovky Jov C,\[X]
2) Functions:
F([a,b], R) : vet of veal valued functions
§:[a,b] =R ([ab]cR i an Tp\tewal)
> Linear Combination : For f,jé ¥([a, b],fK) ond o, pek, define funckion,
(O(—F + pj)(&) = o({(x) t pj(x) ¥ xe [a,b]
> Zew function: 0(x)= 0 VYxe[ob]
Ry[x] ¢ F(Lab),R)
For ang 1 and linear combination, vale in, IRN[)(] agvees vith vule in F(lab], R)
3) Matices: Mpxn(ﬂ" seb of pxn mabvices with enbries in F=R or F=C

» Lineay Combinalion: makvix addition and JScalay Muli".yhca(:ion of mabvices
Let A=<a\j1), B=<b\ju), o(,[&élF (\j.k)-enl:v7 3Ivev«, b’
(A4 BB), = olaje+ by
> Zery Mabvix: O, € Maty,(F)




Definition of a Veckor Jpace

Definition, Vector Jpace

Let F be a field (usually Roor €). A vector space over [ isa get toge%kev with binany
operations

veckor addition, scalat mll:iplicaho»\,
Vxy — V Fxv — V
(we) = (wtv) (2)9) v

(A1) Connufa‘dv}hj over addition,
mv=vin  Yuvev
(A2) associativity ovev  addition
wt(vtw) = (wt) 4w Vuyuev
(A3) 0 vector
d0€eV guch that Otv=v VveV
(A4) Tnverse
Given any veV, 3-veV with (-v)tv=0
(M) Distributivity
a(utv) =odutpv VoelF, uyeV
(M2) Scalar Muitiplicahovu
a(pv) = (xplv Vo, peF and veV
(n3) Distributivity
(tp)v = avipy Ve, pef, veV
(1) MulHPIIcach Idenh’cj
Iv=v YveV (wheve LeF is the usual 1)

» 0 is the 2ero veckor
> Real Vector Space: Vector Jpace over R

Complex Vector Space: Vector Jpace over €




> A vector s an element of a vector space
P Given & vectov space \ over a field F, ny delfF s a scalay
Note

) Be1n7 binavy opevation, Swplies Vs closed wnder linear combination

VuvelF and any x€f, ubveV, wveV

i) Axioms AL- Ak fojeﬂ\cf with binary opevation, addition, is an, abelian, group
Examples of Vector Jpace
1) F" 45 a veckor space over [ with obview definitions of vector addition, and Mulhpl:cd:ov\,

ol P' ( )
AR ) =(X?P)6E'°
oé pw °<'\+P"'
| Joly

J(f) ( )e:r" VseF
Lp, Sdn

2) All examples on page 2 2
3) The brivial veckor space §07 s a veckor field over any field F
0=0+0,  o0=0 VYu«cF
W) Field of ovder 2 (ovder is Ca-rd'mali{cj)
F= F, ={0,1]

Novder

Field ope'vahor\: modulay mvithmetic

[0 | {01
0[0 ! 0/{00
1110 110 1

Note Any finite field must hove ovder of o prime pouey
F=F  where n- Pa aelN, p prime

n
ﬁovdev




¥) IF: “vector space of 3-dimensional column, vectors with, entries in, F,

IF]=222=8

<) B0

5> J)?ajona‘ Matrix Space .
Let Vy be the set of nyn d]ajona[ matvix
For 2 elements of V,,

(dl 0 ) (ﬁ' 0 )

u= °(z,__ V= (37-.___

0 = 0
o« 0 f 0 dl"'(‘l

Addition: wutv = < 2. + ( 51.___ > = ( Atfa >
0 oy, 0 -.PN gt Bn.

o 0 Tp(l : O
Jealoy MuHipthhM: Y ¥¢R, 7( °<2.__ ) ‘( )
0 o 0 "m

$o Vg ¥ @ vector gpace over R

Note: This s basicall«, Jame as IP:\, Jusf chauye of notation
Can show

Q:V, —R

4 4 . ]
— | IS an isomovphism
.,dk -

6} Vy €V, be the et of makrices with positive diajona| entries

Let
B 0
V:( (lz ) 0(;,(3;70
0 b



Define “veckor addibion” and Scalav Mqupl‘s’caHor\,' bj

oy, 0
WtV = 0(2@2 .
0 by
T
« 0
Tuz| oy . TeR
0 un

Recall: d‘,:r =exp(’610j(°<j)) J0 0"['7 makes sense fof o!pO
Then V, i @ vector space
ptoof:

ol o
(A) wtv= ik = 6 ‘ =Vt

nfa, By,

(M3) For 7, heR, (Y4X)u=Tu+Av

i 7+ 7
Jince 0(5 A= d\?

(A%) Tdeality: 0-T,,

Makbvices need to be diajonal

Noke: Operations from, Vy would NOT work on V dince for veV, need nejaf}ve entvies to
fom, -V, -VEV, e Alt jai’s

* Vo is not a Subspace of Vy since Q€Vy not in, V, OV,

Lineat (ombination,

Definition, Linear Combination

Given, vectors v, <y Yg €V and Scalavs o), g €F, the Jum,

9
"(lyl"'""'}"(lt.\!%: 2 | D(j .‘!J'
J°

5 called the lineay combination,




Linear J ubspace

Deinition,  Subspaces
A Ssubset SSV 15 called a Subspace (ov linear \Sub.SPaCe) of V i}
) S#¢
(52) 0€s
(s3) V!.,..., yalé&, ay, + -+ a$l$€lg (closed wndey lineay combination)

Lineay Depmo\ance( Independence

Definition, Lineay dependence
A collection of vectors & ={’\1‘, |, 3’-¢} cVis linem(l] Aependan’f
3 (o, ) € fF"’\No 07 st
A+ - v, =0

Othevuise, Wt Say Vi, Vg &t hnem!\7 independant

Definition  Linear independence
Y, , Vg ate lmear\j independent if
AVt 4y yy =0 = =0, -,dg=0

Jpans

Definitim  Span,
Let GV be a non—emp43 collection of vectors.
The span, of  denoted
Jp(&)
is the set of all linear combinatim of &
6[)“) ={WEF™ [ w=ddy Ui + 4 la¥n, fov SOMe ol F, \liés.s

By convention,

ép(¢)= £ 0}




Basis

Definition, Basis
et S<V be & non-trivial S fo} subspace of IF?
A collectim B=fw, -, vy €S forms & basis i
D Y, - g, i |inemrlj indepeno\en’c

#) splu, -, Yg) =§

Bj definition,
basis of {0 is

Fov any &C<F G#0,
$p(&) is a of F"
Tn fact, JP(G) is the gmallest subspace of F* (,onfainirg G,ie.
TEREY BT any subspace with GES, +hen JP(Q)QS
Proof : Jee part 1
E xamples of subspaces
1) Eve17 vector gpace \ contains a OV
Trivial Jubspace: fol<v is a Subspace

2) IR[X] : get of polvnom’:als m X with veal coefficients of any Aeﬂfee

W neN, Ralx]¢RIX] is a subspace fo every n
Bagis: R,[X]:{1,4,c, 4
Gdequ
Basis for R[x]: fl,x,xz,--.} infinite basis
3) Matrices:

M’,x(,@:)  vector gpace of pxn. matrices




Jtandard Basis:
{EJ-,J 14j4p, 1¢k4nT where Ejx is the mabrix with 1 in \}k-enha’, 0 elsewhere

P
o) )
S At

5) Let |G([a,b],R) be the set of continuous functions : §:[a,b] — R
Then &([a,b],R) € F([a,b],R)
M-‘ The O funckion: 0:[a,b] =R
0(0)=0 Vxelap)
is constant, hence continuous
Linear Combination: If f)9¢ &([ab], &) € ¥([a,6],R), then
oh‘+pj € f([a,b],m) s conbinuous
= dHﬁ?ﬁQ([a,b])
Hence G([a,b] R) i a subspace
6)Let I (lab)R) < F([a,b].R) is the set of al In{e?mHe functions
f:lab) = R

such that inte7m|

b
J () dx  exists

Q

0 i 'mhjmb\e

Linear combinabion of 1n’cejmblc functions is 1n|¢e3mHe
Hence I([a,b],R) € Flab) R) 75 a subspace
Continuous functions are 1n{ejmb|¢.

([a,6), R) is a ubspace of I([a)b],R)



Note: R,[X] € RIX] < €(ab),R) € T([a,b],R) < F([a,b] R)
These ate all G a5 a<b
3) In 3:([0,2)(],@) ave X, Sin(x), ¢ Iineavl7 indepcmienf
Considey ol + ByinX + Yo =0
Need o hold Jov all xe[0,21]
At x=0, Te’=0 => 7=0
= o + psinl2)=0
= o + peos) =0 d:{{even{;ahnj
x=£:o=0

2
Hence

psir\(i)=0 Vace[O,Zn'] =<0

RIx] < ¢([a,b) R) € TLap] R) € F([a,b], R)

Aside: Basis for ¢([a,b) R)7

Can't use Taylor sefies ; not lineay combinationy of fl,x,x?,-'-} since linear combinations ate
finite Jum,

Mpsht: every vech dpace has a basis, but can, be impossible to describe it for 00 dim, spaces

Dimensions

Definition, Dimensions
For any Subspace SV, we define dimension, of § by
din(8) = 4 (basis of $)  cavdinality

Leb V be a vecbor ypace of over F with a finite basis. Then every basis of V hay the Same number
of elements

Noke: Stetnitz Exd\anje Lemma. holds for any vecbor Space with a finite basis



Properties of dimensions and basis

Let V be an n-dimensional vector space. SV be a Subspace. Then, § has a finite basis.
Let a,:din(S)
(0) EVerjdlineav independent set of vectors { w -, ue 1€ S can, be extended o a basis
0

(v) Ang linemrL} independent Subset @ has no move +han q elements
) A"f} linwlj independent subset < F* can be extended 4o a basis of F"
(ui) A'“j finie dpannb:? get for § contains o basis of ¢

Hence no gubset COn\:aininJ fewef than ¢ elements gpan, §

(1) An lmwl'] lndepenAenJc ubset of § (,on’cammj q elements spans $so it s a
bas? of §

dearb 4 a set of size q, spany § then it is lmuw{7 independent and its

A basis:

(v) Tf 4=0, they, S=99. Tf g=n, dhen o=F"

) RA[X]: ntl dimension, Since it has basis { 1,x,----,w"1}
) ﬁ}gf)f has dim, p-n, Standavd bagis
tiy Let V=M, (R)
$€V: Symmetric mateix is a subspace
Phoof:
) YA, Bes, o BeR
(«A+p8) = A + g6
=dA 4 g8 gymmebic => A=A
= oA+pBeS
i) Oy 15 fymmetric = Q€S



Muz(m) has A'H"\I-t = d'IM(S) élf-

We can write elements of § un‘uimlj as
(14) = <(58) * #(25) + (32)

= B=){0o1), (01|, (o0)( i '
f(o 0) ) (1 O) , (0 1)} is & basis for §
= dm() =3
Anothey way to see this, s
d p
(3 4)
has & free vatisbls = 3 basis and dim$ =3

We can extend basis of S to V by adding one more lineavly independent matiix. To find
just find one not in span of B

m{ Jp(ﬁ) = M{
== M is not ijmeh}a

Let M- any natnx onkside § | examPle

whelid) )



DIRECT SUMS
Divect Sums

Definition, Jum of Subspaces
Let V be a vector space
Let Sy, 3q, €\ be subspaces. Then, sum
Syttt S = SplSg UV = {tit—rtog Yy | e, e}

When,
JJ”(Z‘SK) ={0}  Vi¢je
Ky
we Gall +his +he divect Sum  denoted

%
5,6 8,0 -85 =@,

For any subspaced Sy, dg € V
ﬂéin----n% 5 a subspm

i) §4 4 tSq 15 a Gub.sYace

Proof - Pavt 1

Let &g, 9, be Jubspaces of vector space \[. Then,
din(sy+5,)= dim(s,)+ dinls,) - dim(5,0 S,)
In particular fov divect sum
din(s, 85, = dim(sy) + dim(s,)

Let §; ®6,0 08 be a divect sum of Jubspaces and
yjedj\ {0} for j=1,-99

Then Y, Y are linearly independent



LINEAR MAPS

Definition, Linear Maps
Let V| W be vector spaces over the same field F.
A map LN —W is called lineat mop if
L@u+py) = «L(w) 4 pL(Y) Vet,pe F, YuyeV

In abstract algebva, linear maps ave veferred to as vector space homomovphism, since H\ej
like other homolov?knsms they (m Jhuc{'um—PveSeij maps.

Thevefore we denote the get of all lineat maps from V to W by

HO"\.(V' H)

Let W,V, W be vectov spaces over the same field F.
Tt L,MeHom(v,w) and o peF Then oL+ pM defined b,
(Lt gM)(v) = «L(v) + pM(v) Ve \
i also a linear map.
Al it Le Hom(v,w) and KeHom(u V), then the compasite
LoK € Hom(v,w)

Matvix 'rep«esen{?nj linear maps
Let V and W be finite dimensional vector space.
Pick an ordeved basic for V and W

’ (Vl.Vz,"",Vn) be a basis for V

+ (W, W3, Ua) be & ordeved basis W.

TLke linear map L:V — W can be frefwesen{ed b‘j an man, matvix whose Jjth column, i given, b,
v
]

oy
L(VJ): 0(|U| + O(QU2.+ +°(M.UIV\, — (o{z_) (_o-e{--ﬁc?en{'S

Am




Examples of mabvices. vepresenting Linear mops
1) V=R, [x]
L'V—V
plx) — p'(x)
This s a linear map since diffesentiation, s a lineay apevation
(49) = §' tg
@f) = of'

Explicitl .
AL Ly #o,a 4 oy ) = o, 4261

An ordeted basis for V 1
(v, v, v,) = (1,2,2)

(alcu‘a{?nj effect of L on basis
Lw)= L(1)= 014 0%+ 0o
L) = L(x) = 2.1 + 0.0 4 04
)= L6)= 0.1+ 2.0+ 0x

S0 matrix fepfesenl:?ng L%
010
(0 02
000

?-) Let V= MzSzR)
LV—N 5Nen bﬂ
L(A)= AT

We gav above, transpose vespecks linear combination == L is & linear Mayp.

(

Pick an ovdered basis for V

R M (1(5 8) ’ V2_=EIZ:<

n

0ty , v
oo) ’

-0
[ =]
N ——”
—!—<
1]
—
oo
=<
—~———



(alcu‘a“ny e-f](ec{ o{ L on basis
L(6) = = 1.9, + 0¥, + 0-v5 + 0-v,
L(Vz) OV+OVL+1VJ+0v,t
L(vg)= vy = 0-v, 4+ 1.9, 4 0-v, +H0.v,
L) = V= 00,4 0., 4 00y 4 Loy,

|

o matvix 'Veyvesenl’my 15

Li
(1
0
0
0
3) v=R[x]

LN—V, p(x)l—>P'(x)

oo o
oo Rro
RPOOO

L s still linear,

RIX] does not have a finike basis == no mabrix vepresentation
k) V= T([a,b],R) and define

LV—V
X

L($) = J $(t) gt
(18

Fundamental Theovem, of Calculus fells uy that
L(#) iksely % integrable == L(#) €V
= vell-defined map
Inhjmhm s a lingay map =2 L % a linear nap
Bub T([o,b], R) % not finite dimensional == cannot vepmenl: L b«j a mab¥ix.



Inaaes and Kevnels

Definition, Image and Kernel
Let L be a Linear map from VoW, LV—W
Image of L1 Im(L)={weW |u=L) foy Some ve\/i
Kevnel of L: Kev(L)= $veV|LW) =0T also called null- space

Jmpposc L is a linea map LV—W
+ In(L) is a subspace of W
* Ket(L) is & subspace of V

Tt V has a finite basis {v, v} then Tm(L) is spanned by
L), -, L(vy)
Proof: proof of last ort
Assume L:V—2W s a lineat map, V has basis
Let weTm(l) = w=L(v) for sme veV
We can write Vzol¥ + - 4 olgVy  for some o, .-, oy €F
w=Lv) = L(a v 4 4 otgvy)
= o, L(v) 4 -4 g L)
— ueSPan(L(V) -, L(v))
= 1wm(L) Jp( v, L(w)
The other inclusion in the othey diveckion, T frue since by definition,, each,
L(VJ)GIW\,(L)

$o we 3le Im(L) :JP(L(V\)' .. L(vy)



Iv\jec{m, \ uv\iec{"l\le , ?SOMOYPMMS

Definition Let L:V —W be a linear may
* | is one-to-one (in\)ec{ive) o L)z L) = w=yu,
L is onbo (.Su«\')ec’civc) i Y weW JveV st Lv)=w (Tm()=w)
LS bi\"echvc i £ 1s both one 4o one and onto

A lineay map L:V —>W bebween vector spaces over the some field F
1) oneh one & Ker(L)=40Y
) Hence L % b’:jecf?ve when, Kef(l—)'-wl and W=Iw(L)
i) When, L s H\jecBVe, it has an inverse
LW —y
which 15 also a linear map
Proof: of (ii})
Let o peF, w,0,eW. We want to show that
' (o 4+pu,) = L () 4 gL (s,), (%)
Apply L to LHS of (x)
L (dw, + Bw,)) = oy 4y,
since L and L ave invewes and Lol =T,
APPL,'»Aj L to RHS of (%)
LWL (o) 4 L7 00)) = KLU W) 4 8L(L () since L s linear
= duy 4w, LoL™= T,,
Therefore , we have Shown,
L( oy gog)) = Lt () 4 6L (0,))
Lis bi‘jechle = L s inJ'echve
=> 1 (w4 pu,) = L () + 8L (1)



Definition, Lsomorphism,
An invertible [ineat map
LV—W
is called o vector epace isomorphism

We say Vis isomorphic to W denoted VEW if such o nap exisks

Remark: Compoﬁ’c?on of 2 linea (bijecfive) maps  gives & liaeav(bijec{’ive) Map
Compasition, of & linear map is linear and composition of bijections is o bijection.
Hence

DUZV and VEW = USW

YVEN via Uen’cﬂ-) map: L,:V—V L,(v)=v

3) VEW = WV (ince 1samorphisms are Invertible
Rank - Nulli h]

Eq/uwalence velabion

Defindion, Rank/ NullitJ
Let L be a linear map.
Rank of L, (k(L) i the dimension of Tn(L)
k(L) = gim(Tw (L)
Nalliby of L, aull(L) i the dimension of kex(L)
nall(L) = dim (kev (1)

Rank- Nulhky Theotem,
Let V,W be finite dimensional vector spaces over same field F
For o, lineay map LV— W

dim(v) = k(L) + aull(t)




Let V=W=R,[x] and define
Liv—V,
p(a) — p'(al
fov any Mb’v’f*fﬂy p(i)éﬁﬂ[i]
p) = cty + ok + ol kot olg X ot ome die R

Then,
e L(p(x)) = P'(JL) = o, t 205X +30(3£ t--4 no(,\x'\" 4 IK,\_‘[&]

= Im(L)= R, [a]
But note that every polynomial in Ra-[x] can be obtoined like this
= Iwl)= R, [x]
Therefove vank(L) = dim (Tu(t) = n,

Find'mj kernel
Lipla))=p'(x) =0 &= pla) s a constont palynomial
S P(l) =oy  Yx, for some £,y¢F
S ker(L) = Jp(l) = {uy oo €RY
Therefore aull(L) = dim (ker L) =1

Bj mnk—nulli{’ theovem,
dim(v) = nt1
Conshuchnj mabvix usinj otdered basis o \/=f2n[1]
(Vn‘/z, ooy Vapy) = (1,%“',1’")
Observe that
L)z L) = (@) = o™ = Gy

We 3& an (n+1)%(nt) mabvix wet to ovdered basis



01000
0020--0
A= 0003:"0
0000""\
00000

vank(A)= n=n linea'rl’ independen{' column, vectors.

aull (A) = (ah) -vankA = 1

It Vand W are vector spaces over the same field and din(v) = dim(w), then
Vzw

ol : n
Tn pasticulat, ey n-dimensional vector space over [ is somrphic to

Proof:
Jufficient fo find an tsomovphism iV — o owheneer dim(v)=n
Then VEF ond WEF =V 2w
Take any ovdeved basic B=(v,...,v) of V and define

g U F*

n n A,
WEan) - Fuse])

Lkeck?nj Y 15 lineay, check addition and scalay mulHPlica’ﬁon

Addition: _
WB(Z“J *Z_f"’) F ‘YB(Z ”‘J)"J)
J=l ) =)
n oA + £ « B
:Z,—@"H}J)Q" :( 2( ) +
" o« 65 oAn, (i&

) W



Jcalay Mglhfhcajcson

“’5( (Z"‘JJ)) - (

Ca(culahnﬂ Kevnel Ker(‘ﬁ;)

Zo{Jv ¢ Kex( "’B ) & '\(B(Z )'

o) 0
o ()]
= =0 ¥
Thevefore
ker(vg) =07 = nall(L)= 0
By mnk—nu“ﬂaj theotem,
'Mr\k(’\/g)”\ — Im("{/{;)=ﬂ:'L
gince only n dimensional Subspace of s F 'u{sel]t.
Hence b‘j Lemma tn pg 13, Yp 15 an somovphism
Given an ordered basis B=(v, ... v,), we detine co-ordinale Map
v, V—F"
Yp(avi 4 4 olavy) Zdn_m-<f>
This i an somorphism, unigue for which
w(vj)= ¢
Convevse[|1 veckoy space isomovphisms madches bases to bases. So given veckor space isomayphism
yiv—

iks Inverse Y "o i also an isomorphism and maps sanderd basts (e, en)
éo alr\ ordeved basis <V|,-‘,UA$ of Vl \T Flt( eg‘ o shualed i 1,101 of £



For a finite dimensional vector gpace V, there ic a bijective comespondence between coovdinate
maps

Y V—F"
and ordered basis B=(v, ..., u) of V

CHANGE OF BASIS MATRIX

Let \ be & veclov gpace over fF of dimension n dinlv)=n
Let A and @ be 2 ovdered basis fov V

A=(U.,---,u“)

B=(v, .. va)
Have co-ordinate maps

Y V—F "

YV — F"
Y, 1 an somovphism, hence invertible

-
\‘IAO‘{’A:: I\l

Hence

Yg= Yoo ¥aota

$o can 'repvesenl: '\yeow; by nNIn M{fn( cal\ed d\anﬂe o{— basis ma{'{ix
B
L(’A - from A to B
Notation: Ckanae of basis mabrix : Tvansition matvix from A 1o 8
66
A

W’(ﬂ?nﬂ as d matvix
e
‘{’(F CA q’ﬂ

e g0) = G 4, (0)



To find matvix, apply \yso\f: bo standard basis (1 -.e,) of F"
(Yoo ;' Nei) = o, ()

= W@(w\j) since l(fA(UJ')=§J'

= it column in matvix is given by co-ovdinates of w, from A written in terms of

basis of 6
Given 2 ovdeved basis fov vector spoce
A= (w,.00)
B=(v,.,v)

The d\anje mabviy 1 given bu‘ wvi‘c'm7 each Wj €A n tems of basis 6

JH\ COIWM\ UJ'—' ClJ VI + -1 an a :"OY Some C'J JRERtY 61'\:

Then we See that the -t column of the matvix 62 1S given lx]

Ci.
‘1’3(”\3)‘: Cijg_- bt Cﬂjgn.= ( :_J)

Mulkiplication b7 Cﬁ converks co-ovdinates w.v.t A inky co-ovdinakes w.v.t 8
Yz () ¥ veV

Let 4 and g be 2 co-ovdinate maps on a finite dimensional vector space V,
comsfond}nj to “ovdeved basis

A=(uy, .0
6= (V“---, ‘IA,)
ﬂ\(’.'\ 8
¥6=Ca ¥a

whete Gf is the change of basis matvix defined above, whose columns ave co-ovdinate
basis of A in fevms af(j



Chan)?e of basis matrices posess some natwral propevties, which ave eas;

defi ?nj eaLua{?on
s

For 3 bases A, 6 and G, we have
G_ e 6
Ca= ek,

vS.mCC A
CA =T,

1
# follows (1= ()

Examples
) v= R, [X]
6= (1,x,x)
A= (1+ot,:x, +a)
Check dhat A ‘¢ a basis (chek lieay independence)

A((4x) + px + v(142) =0 for some B, VEF

E ar)4 (e 475 =0
& od44=0, T=0, +7=0
&~ a=T1=p=0

l‘j proven from the

diw\(\l)=3, X |'meowh, 'mdepemlenjc vectors = forms a bass fox V

Co-ordinate map for 6

3

V—R
Yo N
Yo [ bttt )= r;<<|Z

To work out C:, write elementy of Bin tevms of A
1= 1(14x) + (1) x4 0
L= 0.(140) 4 1.x + 01 +a)
£=CU(Ha) 10 4 1(14;)



( 01
CA-.(—M)
¢ \oo0o1

To find Cf’\, either compute inverse of C: of follow same method
Express the vectors in A in terms of 6
14x= 114 1x + 0L
X=01+21x+ 04
(+£= 14+ 0-x 4+ 14

g [LO1
%=110
001

Thus

Check that C

3
6 4= L
((0|)(:0\) IOO)
C L[ 01 0
8 A 0Ooo/ \oo i 00 I

Jince Y, = C8 "4:2, it Follows that the co-ordinate map Y V—R is given b‘7:
Since WA(V)= Co ‘WG(V), We de(:
3
V=R
IIIA ! 2 1 0 '1 °(o °<o "'0(2
(HCREER o2 )L A L) | oy | = =olyt oy 4oty
00 0/ \a, o,
Multiplication b(j C: takes co-ovdinate vectovs written in tevms of 8 to co-ordinate vectors in
teyms of A
For & concrete example, let o) = 14 20 43¢}
p(x) n berms of 6

1
We(p(x)) = (é)

Mu\l:iylv,ing bw, 62 3?\10 us

S -EE0 -6

which 1 co-ordinate vector of plx) in terms of A since



(-2)- (140) 4 fooe + 3-(142%) = -2-20 4 fat #3430 = 14 20 4 3n" = pla)

We have veﬁ{?ed
Py ) = Al2) = (k] = 4 (o)
6 Tgf 6\ T\ T TP
2) Let lineat map o V=R, [x] be
LV—YV
P(l) — P'(x)
L u?vesenled b, matvix wv.t @ be
010
MG(L)z(o 0 z)
000
Findinj matvix Wt A
L4a)= (142) = 1 = 2(24x) 4 (1)) 4 0(145)
La)= (x) = 2= 20142)+ 20+ 004)
L)z (1) = 20 = 0(243)4 2(x) + 0(1 45)
Hence 1 g
M (L):(—I -| z)
A \ooyg
Matyix fepvesen{ing Lineav map vevisited
L:V—V\ s a linear map and 8= (vi,-Va) an ordered basis for V,
Matyix vepesen{?nj L wv.t basis 6 is dencted MB(L)

L is uniquely determined by its action on the badis vectors of B, 5o the jth column of MQ(L)
can be comyu‘]leal by a"lt)'m7 L to basis vectoy vj and uﬁt'mj co-efficients w'r.t 6 a5 a column vechor.

=> matvix obfained by appluing L 4y v: writing in t 8 and writing co-ordinates as
‘m 101“3".01(1{.\:. ap?ﬂl;g;',‘f?) oVJ WY) mj in teyms o{- and wy) ﬂj C0-07dnaces a

M(L): F*— F°
EcluivalenHv basis 6 9ives V the co-ovdinate map Yo: N — Fr
§o we take ¢ ,applv 1}.; to jef Vi, aP?"} L, then anlj Y% to jzf w-ovdinate vector

-l n
Mﬁ(t):;F" o L,y s




Hence define

-1
MG(L) e 1},80 L ol_rﬁ

Also use notation Mﬁ(L) to denote matyix 'repvesenhng this map w.v.t standard basis of P

These descriptions ave eqlu'walenf.

The matrix Ms(L) fox a given basis B8=(v,..va) is obtained [u, “P?' ?nj L to Vj,miHn?
vesult in tevms of 6 and then wiiting coordinates obbained as jit column ledn

We can describe this in tewms of the co-ordinate map g
§o we take ¢ ,apylv u(; to jef Vi, “P?“] L, then aﬂ:lj Y% to \7& w-ovdinate in terms of 8.
More concvetel" , Since 8 is a basis,
L(v)= Aijvl + 4 A,,J- Vo for Some Ay, . Ag€ F
Then MG(L) is the nxn makbyix (A;J-)
phool Recall that Ma(L)gJ' gives the J”‘ column of Ma(L)~
Now

Ma(L)gp(lr@oLouB-‘)(iJ)
= y (Ll (e))
= y(L(y)
= %(Aij\/ﬁ ----+A,,\j Vo)

= Ay W)+ 4 Agyglin)

Therefore
A e A )

Mm(L)= ( RN
@ Aay- Ann



onpevl-ies of natriy 'fepesen{in? a Lineay ma}?

Let V be a veckor space over field F, L,,L,:V—>V be 2 linear tvansformations and
@ be a basis for V. Then:

('n) ¥ scalavs o, pef,
M@l +pL,) = ML)+ pMg (L))
(i) M(LyoL,) = m (LM (L)
In pml?culav,
L:V—V is invevtible = MG(L—') = MG(L)-
Proof
(3) We use MB(L) = "~Y8°L 0 H’@-l

Hence mafrix nu\‘dphca‘dor\ (,omspono\s ) conpos'.l‘mn of Lingar mqps
(and we can 'm(:evrve‘r them 6y Axn matvis as a linear map F">F

We have
MB(Li) MB(LZ) = ('\‘;@oLlo \1)84)0 (‘lysoLzo "fe-l)
lrsoL,o("““r:)"Llo ‘hs—‘ cow\?os'u{ion of -func{ion) is associative
= 'wgoL|oLlo‘l‘16—‘
MB(L|°LZ)

When L is invertible, we have
Ual = Lol = T,
APP"? to above to 3&
ML) Mg (L) = Mg(LoL") = Mg(Ty) = T

m =m0
Mg(L) (L) = mg(Lor") = mo (L) = T, } = ML) = mgla)

(1) ME(L)-' F'sf is & lineat map.
We have MB(L):%&D LM}J‘;I

Let v be ar_\z avbﬂmv¢ column vector in F c;no\ v be th
6 -

‘ ¢ cowespondinj vector V
wr-t co-ovdinate Map , I-e. we have U=%(! — V 1’(@

(v)



Then
Me(al 4pl,y) = (g o L +pL,) 0 yg ) (1)
- (o (alytply)o ) (o)
= (1o (b4 L) 0 g oty ) (V)
= (ygolul, +8L,)) (v)
= 4y («L,(v) 4 6L, (v))
Ly (L,(v) + 8, (L, (v))
dtyg(L, (' (1)) 4 plys(Ll(’lf;(!))
= a(ygol, o, )(u) 4 pygol, 02 )(v)
= o M(L)(x) 4+ p Mg (L,)(y]
= o (ML) + pm (L)) (v)
Trwe YU eF™ = we have an eqmli%v of lineav maps Fr—F"

MG(aL, +gL,) = o(MB(L.) + pMa(Lz)

"

Let L'V—V be alinear transformation, A, & be 2 bases for V. Then
ML) = B0 (c) = () malt) ¢
In particular, MA<L) and MB(L) sve Similar matrices
Yoo :
We have Ma(") = Yo oLo \re:'
IO BRI N

Also '\1,$V)=C:1(,A(v) Vvev =$'\y8=cfo1“
Hence _

Ms(L) = 'lyeoLo'u{G

= (C:o'lyﬂ) oLO(CfolfA)-l

} -1
= Cfo'lonLo 'lyAlo(C:)



S o) ()

= S 0e?)
Previons Example continued
v= R, [x]
6= (1,x,x)

A= (1+.x, X, 1+2)

i el

L:V—Y given lu, P(J-)HP'(J-)

010
M(L):(o oz)
b 0 00

10
MA(L)-‘ "(; ’Oi 6)

\Ieﬁﬂing theovem,

cam 0]

Remavk: If W and V ave Jtim%c dimensional vector Spaces with
A= (U,,....,u,\) & basis fo1 W
G- (Vl,"'l V.\) a basis -j'OY V

Then any [ineay map L: WV can be veyvcsenhd b‘j a matriy



(3wen b(, [ineay mr)
é .t By NI
M (L):F—=F my(L)= ol
I-f A' 15 anothey basis .j-ov W
T4 @' is another basis for \
then we have ckange of basis -j—ovmia

6/ ,8, 6 A
A ERAY M (I

EIGENVECTORS AND EIGENVALUES

Notation -
T sy )

Definition,
A linear map L:V2
An eijerwec{ov of L is a non-2evo vechr VeV guch that

LV =) where AeF  scalar

Tn this case A is an eiqemlalue of L

The same definition applicable to matvices
Ay = v

The set of all eijemlues of L is called the spectvum of L : Spec |
Spec L= ANEFIL-NT,, is nof inverkible’

Tndeed
Ly= Ay & (L-ATd,)v=0

Remark : Jimilar matvices have same eigenvalues
Example:
Recall V=R, [X]

LN—V, p(x) — P'(x)

@):(I,JL,JL) MG(L) =(

)

o~ o

[
0
0

oSO O



Uppev Piangulav ) e'ujerwaiucs ave diagonal elements
) >\=O, a0=3

|

0

0

The e?genvedovs ave ( ) - 95 1

L and Mﬁ(L) have Same eijenvafues/ cigerwec{ors

Let L:VO be a linear map, \ be a finite dimensional vectov vpace over o field F
Then ot each matrix vepresentation A=M8(L) of L

V15 an eijemlecfov & w-ovdinate veckoy V- WG(V) 15 an eigevwec’cov with,
eiﬂen\!alue A

Moveovey, the chavactevistic poh’now\?a\ det ( )\In'A) defena\s on(x’ on L, not 6.
Hence we can define this to be’the chavacteristic Pol~1nomal

CL(A) of L

phoo_{i
For @=<V.,---,v,\) a basis o]( V

Recall thad YV —>F" is the co-ordinate map which is the vector space isomorphism
that Satisjies

”{’3 (UJ) = .e.\’
Fov veV, let y:‘\fe(V)
Recall that viewed as linear Maps Fr— ’F’: we have
M@(L) = 'q;so Lo lrs
Let Aek
Nofe H\a{' a”L’?nj \VB' we have

(L)) = (e L)(v)
= rgoLeqoy,) (1)
= (M (L) o) (v)



= mg(L) (g(v))
= mg (L) (v)

nd
’ y() = Ay (v) = A
L) = Av & (L) = 15 (00)
& mg(L)(v) =
S Al =y

o Vis an eigenvector of L with cigenvalug A & Y=%.(v) 15 an eigenvector of A=, (L)
i '9“\ chot of Ij ) w;tksecjen\lalﬂc j f .} ¢

To show ¢,(X) does not depend on 8, can arque that 5t ools are cigenvalues of L and only
depend M L (and ¢,(2) is monic)

Alternative for A anther ordered basis of V, we saw that
Mg(L) and M A(L) ave Similar makvices
(3 an inverkible mabix P=C 5.t M) =p"m,0)P)

and we Saw that Similar matvices have Same chavactevistic Pol«,nomial (Lemma 2-13) -

D}agonalizable Lingar maps
De-finH:ioV\

We say @ linear map L-V—V s dia onalizable when \ admits a basis @ for which the
matvix’ Mg (L) 'repvesenhn? it dmyor\alj

Recall that nxn matvix A is diayonal?iab\e if

3 an Snvertible matvix P for which AP s diagonal.
This happens when eigenvectors of i form a basi> of F i
Using isomorphism Y- V—>ﬂ'—n,

A linear map LV s diajonahzable SV admits a basis 6=(v,, -, va)
wheve v 15 an ei?envecfov



Example of infinite dimensions
It V not finite dimensional, situation move complicated
) Let v=R[X]
For pla) €V, define
Lipte)= [ e)

Note that L(p) 15 & polynomial in x, and inkeﬂmhor\ is linear

No eigemlecfovS:
i Lp@) = xplx)
]

p 8

{ p(t) 4t

0

D-,Hcvznhm, both sides and wing fundamental theovem of calculus
x)= (Ap(a)) = Ap'(a)

if A=0 then p(1)=0 YaeR = p s Zero Po[u)nomial /vec{ov

= But 0 vector is NEVER an eigen\lec{or 50
theve 15 no eijenvec{ov for A=0

1.},\#0 = P($)=)P'(x)
p(x)

A=
Ao P
x/A

= pl=ote™ " for some otefR
not a polu,nomial

Hence specl = ¢f



(2) v= ¢ ([a,6), R): vector $pace of Tn{imh(.’ diffeventiable functions {-’[a,b] — R
L:V—V,
L($)=4"
15 & linear map on \V
We have
L(M) =/\e)°L VAel
= ™ s eiﬁenvedov of L for every Ml
spec(L) = R
(3) Legendre equation
(1-2)y"- 224 - 2y =0, A€R, y a funchion of x
Define L(y)= (1-L )9"-217' == by properties of digfeventation L is lineav
Could view L a5 a linear map on the space ¢*([a,b], &)
Then Legendve equation becomes

L(“)) T )u) (M ei9envec{ov pvob\er\)

It v isa po|c1nomia| of deﬂvee n, then o 1s (I-xl)gn and -Doy, we vestiick L 4o Ry[¥]
)

LR [2] = R, [2] i a linear map i
inte dim

L('ﬁ= )«) an eijenm‘rov pAOblem,
Represent L b" an (nt1) x(nt1) mabvix
Fov example if n=2, use 6=(,x, ) for Ve R,[x]
L) =(-£)1 -2212 0201 40-x 4 0
L) = (1-X )" 230 = <20 = 0.1 4 (D)4 0
L) = (-8) () - 2(e) = (1€)2- 2220 = 2-62 = 2.0 4 004 (-6)
$o wrt @, L s represented by the matrix

A=M8(L): 002
0-20
00 -6



Eigenven‘wf ;
AJ z - 6 ]

!
Jo eijenvwlov of A, ;-6 v\;:(O)
-3

|
Jim‘:[ml«, for Az=0, V= (g)

0
)\='2, v,= | !
2 3 0

To get corvesponding eigenvectors of L, we apply Vg

|
Ws-l<(0)) =1.040x 4 0=
0
(HIRCIEE
T = 040l 4020-x
Ye 0
I
'q,; 0) = 140X -3x = (3
-3

Get eiaenvedov(

p,(1)=1, pl(x):x, p5(1)=1-1.2 Le7endre po'vnomia’

Cus{onah’ Jcal’m, Ps(ﬂ 2 (Jx?—a)

|
2
Matviy A s diayonaliiab(e since has 3 distinct eijenvalues

= L d'«agonalizaue

Con also see since p,(x), p,(x), ps(i) ave |ineavl7 independent in R,[x] Hne(j form a

basis of eigenvea‘of)
| 0 | . 000
P=({ 01! 0 P AP=(0-20
00-3 00-6



For higher n, Keep same eigen{unchons and get new ones

|

=] P,t(l)= -3+ 5¢ (ov 1(558- 3x) mcaled)

Vo o

e.q for n=3, aloo hove eigenvalue A= -12 = eigenvector vy <

2

Legenol'u pol«,nonials ave ov&hojonal (inner onducﬁ 1 0)

DUAL SPACES

Linear Functional

Definition Linear Functional
For a vector space \ over a field F & linear functiona| is a linear map
Lv—F

i-¢. an element of Hom (v, F)

Dual -SPaCes

\De{ini‘c?on Dual Spaces

The space Hom(V, F) (j— lineat functionals fom a vector gpace over F called the
dual space of V denoted V¥

\ = R’ (column vectors)

3
V=R (column vectors) , then \™* can be viewed as vow veckors since hese "act” on
column vectors bc, mabrix maltiplication

Matrix mulﬁip'icafion 16 [ineav and outpm@s in IR

X

(y.,g,,q,)(it) = Yy, 4 Y2dy t W3 X éR
b

[ 0 0
Stondard basis for V=W\32 = (8) Ez:(o) .C,f(‘l))

Dual basis ]‘ov v¥ i ]L,: (l 0 0) h(OIo) _h(OOI)

: l
g f(e)= (IM(%} = f,(e)=0



Tsomorphism, between \/ and V¥ for finite dimensional V

Let V be a finite dimensional vector space, basis 6= T
Then V¥ has a basis given by linea functionals
vJ-*: V— [
VJ*(V,‘) = &J fov j-'l,...,n
Hence dim(v) = dim(v¥) and v V¥
An isomorphism is given b" the lineat map
Liv— ¥

L(VJ)=vJ* fot jz1,4n

Mq[-"

To how vJ-* form a basis, we need to ghow they gpan v¥ and H\u’ ave lineavl7 independent

Jo need to show that every linear Junctional $:V—F is a linear combination of v,* .., v

Every linear map § is compelely determined by action on v,,..., v,
Define
5= -}(VJ) where "3“’ fov \‘,:1,---,1\

n
J=!

This s because
n

(in ') el = 2_ajlef(wd) = 7= £
= '

J=!
Same action on all basis vectovs hence have Same map - spans Vilf

Have seen that each F:V—F in V¥ is a linear combination of

% ¢
TANRROSTA

:ﬁ U,ii XL VN* J?an \l



meavL] mdegegdenfz Assume 3 oy, - u,,e F st

-
Then 7_“ Do)z 0w 20 => > wly*w)) <0
=
= Z__—O(Jéj" =0
J=!

= o=0 Yk
Hence lineav!7 independent and span V. == forms basis
Jin (V) = n = din(v)
v, V¥ vechor spoces over dame field with Same dimension = isomovphic VEV¥
T4 B=(v,,.,va) and 6‘=(V.*,---,V,‘,*), we have 2. isomovphisms (co-ordinate Mar‘))

n

’lf’k V_7'F1 V H\,
Jo 'lsonorr‘\ism L:v-v* ?aven bu)
LV ﬁV“

: R |
VJHQJH\) -

Dual of a Linear nap

Definition, Dual Map

It LV—W s a [ineay map, then the dual map of L is the lineay map
1 wk— v*

L¥(#) = 4oL for -}GH*

In the example V=R viewed a5 coluan vecors with V* bcinj intevpvehd as vou veclony and W:=R,
The linear map L:V—W can be Ye}msenfed bt, an min matrix A

The linear map Liw o g xe‘msmhd b«, the nym matvix hansFDSe A



Z.Inner Products

Dot Product n, R
" n
Tn R" we can wse dot (o scalav) product. Tf ® =Z’ d; ¢ and ¥ =Z(3J‘ ¢
gzl v= !

n

onpevhes of R

) wy=y-u

J) llullz0
¥ llull & u=0
Hewmitian/ Complex inner product on ¢
In € wual dot product [y is not wseful, since

[wveldR

)4

fum ={ii+ot0 = 1
[vv = {4140 = 0 but ¥0 ot like enghh
So we use complex con\]v\?ake |2|=J§ (non-nejahve)

For examy\c

Define Hermitian (ov complex) inner product

(wp =W = ?“:JJ b
i




REAL INNER PRODUCT SPACES
Tnner Product

Definition nnev Product
Lek V be @ vechor space. An inner product on V is 4 function
,):VxW—R

sach that Yu,v,weV and VueR
1) L) =<vyw sxjmmeh‘j
i) Cwrv, w) = S w2 +v,w) lineat in fivst variable
i (du,v> = ou,v)
s positive definite
V) <u,u) =0 & u=g

Vechor space over R an inner product is also called o el inner product space (also called Euchdean)
Space
Examples of Tnner Product Spaces P

) Yne N, R" with usual dot product is an inner product

X (,| Yy
:{_z | ?z = (1| 'xz...\-x_u) T 1s‘9|+1z‘jz+""+1n‘jn
sl Lie I

Remark : Noke +hat (ii) and (ii;) fmply that n any inner product space, for wvjwev, o 8 R
an + gy, w) =) + pCvw)
Combined with symmetry (i), we get
Cuy v g = (vt pu, ) = v, ) + 6Su,0)
= o2 {wy ) + puw)
= ¢, ) linear in both variables, i.c. bilinear



7.)V=(,([O,I], R) Jpace of continuwons veal valued functions on l0,1]
Define inner product

1
{t,9) = J {(t)g(’c) dt

We know continuows funchions are integrable and product of continuous functions is continwous.
= owlputs & veal number VigeV
= <) a funchion from, V3V —R

Let -},3,ké\l and oeR

,[gmmhg’-' - I
g2 = [ He)geddt = [ gO5edt= Gg,
0 0

Lingavi&t’l In $irst variable

1
(49,h) = [ (149)e) h(t) at
0

= | ((8)+ 9())n(t) at

- [[InE) + geIhee)) at

l |

FEED + [ gleIh®lat = <f, 9) 4 (9,0

o% o% c%

0
(4, 9) = o(,t) fo(-f 9(t)-oz +(k )q(t) = <4,9)
0

O‘ﬁ

Po}nh\le de flm{c
2
) = [m 20 gince (HE)20  Ytelo 1)
0

H )= f(n‘(t) 0 & 4(£)=0 Vtelo 1] since ({(t))zzo

0



Remark proof did not "‘j on [0, 1] define inner product on C([a b].R) b‘j
OE j FOgH gt a<h

J) V=R2, product given by

<( ) (m)> Jx9,+ 20y,
Symmebry: <<¢z) (l, )> Iy, 4 240

e ()

Linear in fivsk vatinble : <(at ) (‘9\) (2 )> 3(x, ‘“J\)Z + 7-(11+'11) &

=—< (J ()> 1 <(";':) ' (jilz)l>
() (a)) = () (1)) = lesd v 2fendy

= ddny, L2y,
= 0( (\3\1 (, +21’—‘,7-)

Positive definite: <( |) ( )> = 3a 4 24,20 a5 %20 Yxel

<(1|),(1)> =0 & J.x,-lZiz =0 & x,:0; x,20

)



Norm. of a vechor

Definition Novm,
Tn an inney pmh\c" Space \, the norm, (or |en7+l\) of avector v is

“V“=J<V|V>

wheve non-ne7ahve Squate 100t s +aken,

Remavk:' The notm is a map [-0: v—R but is NOT & linear map

For eR veV, lavl = [Gav, av) = ()
= lalllvll -, notot[¥ll

Wait Veckors

Definition Wait Vector
T a vechr veV has norm 1
llvll = 1

then v is called & unit veclor

T V40 7 any non-2evo vector, vector

z
l[vil

has norm 1 = "L" 15 & amt vector
v

EXanples of Notms
) In ¢([0,1] R) with inner pvodm‘

|
{t9)= f $(t)g(t) dt
0

vechor $(x)=x has novm, I§11=0<4,4)

|
=1

) = le‘(t)-((t)dl: =f2t’dt-—[tt3_"] :
|

t=
? iz0




= [I#ll=

3

Hence 1) ={3x sa anid vechor

16

7—)V= R2 with inney prodmL

() () = 2umt 2o

Vectoy U:(O) has novm
|

Ivii=d3.0.0¢210 = (2

L=_!_:(0 ) a unit veclor
vl 2 \'/f

BILINEAR FORMS

Definition Bilinear Forms
Let V, W, U be J vector spaces over same field F A map
f:VxW — Ul
is Jaid +o be a bilinear map if it is linear in each of s arguments.
In the special case wheve V=V, u=F, a bilinear map
f:vxy —F
is called a bilinear form.
Tn detoil, a bilinear map :\xV—F that satisfies Yuv,weV, aef
1) Cusw, 0D = Cupw) 4 <y, w)
i) (e, v) = o Su,v)
i) dwviw) = dwp) + (uw)
W) (u.ow> = o {u,v)




Examples of Bilineat Forms
() V:Rzl & bilinear form  that is not an inner product i given by
fvxV—o R

HJ (5 oo 2

map bi |inear , but not &jmmchic = not an inner product
2) V=R
g:Vxy— R

9((3): (3)) =20t 2

This is bilinear, symmebic, not positive definite

n
Matrix vepfesen’t?nj a bilinear form on R

A map -]—-'fKnX ﬁ(n-—* R is a bilinear form
A ang(’f\() such 4hat
fluy): WAV YuveR”
The entries AJK of the matvix ave 37ven bﬂ
A = 4 (¢, ex)

The matrix A 1S Known as the

Examples of matrix vepmen{inj bilinear form
1) v= R
Using Ajy - $(ej, ex), the dot praduct vepresented by T, since
A= (e, e) = ee = (l)(l) = 4 0% |

0] \o
Ay =F(es, 1)< Ez'§l=(0)-<') = 0

l 0



)=k
Using bilinear form £:VxV—R

f((i‘z) ' (92)) = 3y, 2y, +2xay,

A= 4(ee,) = f((io)(lo)) = 3114+ 10400=3

A,= (e, &)= {((”,(?)) =310+11+10=1

Ay =1lez,8) - +((?)(:))) = 31.0400421:0=0

Ay, = 4(ez, &) = +((?)(?)) = 3.0.04 1.04211=2

Matrix 'repvesenh'nj A s

A- (‘é %) co-efficients

2) Jimﬂadv for the bilinear form,
SZVXV_”R



&,mme’rﬁc positive definite matvices

Definition Jymmetvic matvices
Foy any. AXn matvix Aemat(nF), A is SIjMMC'l'ﬁC if
A=A o Aij= Aji

Definition Posidive Definite
A veal symmetvic nxn matvix is said 4o be positive definile
VAVZO0 Y column vectors veR”

viAv=0 & v=0

Leaa\ing Principle Major

Definition, Leading Principal Minov

For any nxn matrix, a leading principal minot of A is the determinant of the submatrix
formed “by taking the +op left " kak Submatrix of A for any 1¢kin

ayld, Tl

0\2.\

Let A be a teal J’mmd'rio nin mabyix. Then the {oi\ou?nj ave e1uwa‘ent
1) A is positive definite
ﬂ All ei,emlalucs ave pos'n{ive

iil) Al the Ieadim) p'fincipal MINgYS AYS Pos’.tive

A bilinear form <,) on R'XR is a teal inner product

|

matrix tepresenting <, i @ veal symmelvic positive definite matvix
preseting J P



Examples
) vk
The matvix 'rep'resen{'m9 dot product
(5 2)
I, & 'rea|,65mme+vic, posihve e?jenva|ues == posﬂ'we de{inil—e
¥
Using bilinear form £:VxV—R

{((i\z) <’,_>) Juy, 4 X1y, +2x9,

R led b A=
elmsen e ’ ma m( (0 2)

Jince

) () &3 2) ()

= (2, x,) (09, +
(1 z ( 92522)
< a,(39,+ 91) t %52y,

= va|9l +\1‘31 + 211'12

Note: Can inshnﬂ‘] see matrix from, co-efficients
A';\’)’ Coe‘(‘f-lc.le’\"' o{ 1;5;

A not ngmehlc = form not 57MMe+v?o
= not an imey product
Also saw B=( g ) non-posh‘ive eigenvalues
= not positive definite



h:\Vx\ — ﬂZ3 9-'“'\ bx,
Xy Yy

il 2] 5| 42| = 2ayy, + Xy Yy =24y '2"3‘51+k13'1} keR
\13 \,5

This is & bilineay form on R since we can 'repvcsenk btj matvix

200
01 -2] el Jujmmehio
0-2K

Positive definite: MS'm? (311) 59|\Ies4evs (rideveon,

Caiw‘ahng de‘revmif\m\}]s_ g{}

(1) [2]=2>0

(2)’1 0l=2>0
0 |

(

’ 0 ?g = z|| -2| = 2(k-4)
0 -2k 2K

Matrix positive definite & K2}
Therefove his an ianet product iHf K24



Matvix Form of & bilineay Map on tea| vector space V/

Genetalise vesult 4o any finite dimensional vector space ovev R

Let V be a finite dimensional vectov space over R, led B={V,,- - Vn] be any basis fov V.

For wveV, leb u=tg(u) and ¥=%,(v) (50 % and ¥ ave co-ordinate column vechors
w and v with vespect % 8 ? T

A map () VeV =R s a bilinear form, & Jamatrix Aem
(u )= w'Ay Vu,veV

m) such +hat

n

The entries of Asy of +he matrix s given b‘ﬂ

AJK = <VJ: VK>
A s called () (}
The bilinear form, {,) is a 1eal inner p'foJuc+ mV & A -Ii 1eal, svmmehic positive definite
Matrix
Examrle l
We Jaw <, 9) = J{(t)g(t) dt is an inner product on infinite dimension, vectoy space ¢(lo,2].R)
0

Let V=R [x]. Then vec([o,1] R)
= Jo +his is an inner pvodu& on V as well.
Mabvix wv.t 8=(1,2) standard basis:

A= <v, V) = <1,1>=£fd+ = [a];= 1
|
Ay ) = G1,x) = { 141

Az = Ay is inner product is symmetvic

|
AZ‘L:<V1:V2> = <\1,1>: th A{; =

L
5 3



We Jeml matvix
-
(A

Check 4his i positive definite using (1) u\s'mg J3|vesjrev'5 Cviteveon

(1) [1]=
(1)

| Yy
h s

=150
12

Check matrix vepresents ()
A pol‘)nom?a| in R[] has form,
oy Hel X oy, o €R

y@(o(.,w,x): (o(,,)
4, 4) = <do+o(,x Ry bl L) = (ol H{:

0

|
Jdo‘l'zoi At o't £) dt
0

> [
[ozot+ez°o(t+ ]
0

o(

olo(+o(
0 3\

(«, o<|)<l Vz) (O(o) = (w0 o)) (oto'r'/zoh >
VZ. '/3 oy '/1°(0 4 1/30(‘

2
= oLy 4,4, ‘5,"’('



Matrices Kepvcsen’rin? the same bilinear form,

How are matvices 'up'vesenhnj the Same bilinear form with vespect to different bases veloted ?

Let V be a finite dimensional vector space over R and let §:VxV—R be a bilineav fovm.

Let A and 6 be 2 bases tov V. Let B be the matrix vepresenting § wr.t @ and A be the

matrix vepmenl-in9 furt A
Then 3 an invevtible mabriz P such +hat
B=P'AP

In $act, we have P= C: , the cl\an,e of basis from 6 +o A
Prood:
Tt ug=y () vg= ()
4y y(0) YA

Then
= () = (po g o g )(w)
A
= Cg “’em
A
= (.6 Ug
Hence
;

(u,v) = MIA!A : (6258) Alchuy)

T, A
= (A;(C:) A CG MG

Definition Con91uenl' Matrices
Mattices A and B that Ja‘r’us{y the condition
B=P'AP

for some invertible matrix P ave called congruent matvices




Lmportant !1!
Show +hat if A8 conjwen{' then
i) A symehic & B symmetric
W) A psitive defintte &= B pmitive definite

(,onj'ruence 5a e%’nm‘eme 'relaliov\ on, m'}'ricc}




COMPLEX INNER PRODUCT SPACES

Definition Complex innet product spaces
Let V be a vector space over €. A Hermitian inner product on V i a function
() vav — (

such that Yu,vweV and aeC,
0 {uyv) = {v,n) Hevmitian (Con\juﬂajre) sjnme’m’
i) Cuyviw) = v + (g w)
i) Cwtv) = S, v) Ve
) {ww) 20 (in pav{icuhv («,M)é K;o) positive defintteness
v (ww)=0 & u=0

Iineaﬁ’r-’ in, Jecond avgument

Recall:
1) Complex con\"ujajre
For ang 2¢ ¢, 2=ty

FE 1-?’ - Comp\ex con\',uﬂmle

2) 2, +%,
3) %,
Recall: For < ) Vx\l—>£ a Hermitian inner product
w,v,weV, de €
) <u+v, W) = m 'n, (5)
= Qw4+ utd by i)
= Qu) + fuy)  since 2,42, 212,

= <“a “) 1 <V|“’>

2) G v) = {vaw) by (3)
= d{v,n) b’ (i7)

= J(v.n) dince 2,2, = zlzz.

n
N' NI

”‘I




= % duw) 57(1)

Nom. in a complex inner product

Definition  Nowm,
Let V be a complex vechor space
The nom, (ov |en5’rk) 18 afuncjriovx
I-1: v—R,,

vl = {0

Vectors of novm, 1 ave called unit veckors

Note: Novm, & NOT lineay

lavll = [|{Ivi

Hermitian inner product using makvices

Definition, Con;‘v\?ajre Trans pose
For any pin matyix A=(A\,'x), we define ik Conju}de transpose 4o be

A= 3)T
1.e
. I
Ay (Ay)

Definition, Hevmitian
We say a Squate matvix A §s Heimitian, when
A=A

and positive definife when WAw>0 for all u




Let \ be a comp\ex finh‘e dimensional vector space, let 6 =(v,, - vn) be a basis for V.
An ope'lml?or\ (,> on VxV is an Hermibian inner pwrodumL
3 & Hermitian positive definite matrix Ac Mn(xﬁ ) for which
Cwu) = WAy

Vu{,\'i‘e\l, whete $=7fs(“) and V= "i’s(v) are +he comsfondiny co-prdinabe |(column | vectovs
in

The Ajx of entries A ove given by
AJ'K: <VJ,VK>

Note' Al 1eal & AT= AT

S,mnehio matvices ate Hevmitian, ot vice verca

Examples of inner producks
1) V=¢, (z,w) 2w

Note that (2,2) =22 =’2‘2€Rzo
2) $tandard Tnner Product on €

v
T
D 5o o5




(1) Giii) yame as R

N Sy 4t LK,
Ln Xn,

2 2
= I(X.,| - 4 |.X.,\| € Kzo

and 2] 4 4 lagf20 & 2,50, ) dn=0
Matrix vepresenting (,)=1In
(wv) = wiine= u'y
3) The space of Continuows functions C(([O, 1] ¢)
f:log] — ¢ ([on]en(')
with innev produd' given b«, <};9> = L )('('l')s(f) dt

4) v =(2 with Tnnev product

() (g)) 7 o0 e 25

Matrix 1ep1e$enhn7 <,>3 ln’ lookin(} coefficients
&
02

All eigenvalues of a Hermitian matvix ave veal.

Proof:

-\l”/"\‘ril’ = i'\T'"\I> MuHiy\-) both  §ides 57 [



5) (onsider

= A Hermition,
In fact lemma on P 49 still applies in Complex case
Mﬁn, (i1:) Jy[vehlev's Cvitereon
q 2

d

-1 2
(]2]=2>0

h”zi -2 415150
-1 2

So matvix posi-hve definite

=> (u W)= u Ay defines innet product
(&) G &= GG

= 25(_\‘}‘ 1 .liﬂ,)_ ‘thlj' + Ziz"l

\E-.S



CAUCHY-SCHWARTZ INEQUALITIES AND METRIC SPACES
Let V be any innev product wpace (veal or complex)
Cauch, ~Jchuartz inequality
Tt wand v ove any vectors in an inner product gpoce V, then
[Cuw?| < [lul fIv]
Proof:
Let V be any veal faner product space.
For any we, Cww)20
Let w=otu 4 v wheve 2= -Cuy) | (3=(u.u)
Then $20 and
Cow +pv, ot pu) = (u, o2w) + Can, pv) + <y, wi) + (g, pu)
= oy ) 4 £ i) 4 pavw) + 6 (vw)
=op- oL -k p(v,v)
= (G - ()
T4 =0 & =0, then Cauckv’-Sclwav{z 'me:iu\alhltj drivial.
Obherise 20 = B(Cu, 0y (v, v) ~{uw)) 20
= () ne) 2 {uu)
= (u,v) 5@)@ (non-ne9a+ive Squate vooks)
=> Cuwyv) ¢ [lullIv]]
Let V be & complex inner product space. Foy any wel and
(0,)2 0
Let w=atut pv where o=-Cuv) and p=fuu), peR, 20. Then,
(it pv, ant pv) = axu,w) + 1) + Blvi) 4 gplu,v)
= a2, w) + ZpCu) +palv, u) +gluv)
= ax(ww) + Apu,v) 4 v, ) 4 {vv)
= 2ap + 2 p(-2) 4 pal2) 4 gC0V)



= -ga +p V)
= (!(‘lol‘2+(5<v,v>)
= 6(Co)n) - IGu))
If p=(uuw)=0 => u=0, Cauck,-&ckuavlt inequality is 'Cviviaﬂ, tue, both sides O.
Otherwise >0 and <o(u+pv,om+(;v)20, 50 e have
Cuw) {v,v) - )20, = ()] ¢ Cu,w) (v,v)

=[Gl < Hullbel (von- negative square vuok)
|

Triangle imwl;l7
Triangle Inewm’
If V i an inner product space, u,veV, then
lwtvll ¢ full + |l
Proog
1) Over R: By definition
hutv I Gutv, wed
= un) 4 {uw) + (vn) 4 {vy)
= [+ 2Gu) 4 ol
<ol 42l i ¢ I Cauchy- Schuerl inequaly
=(wll + {0}
Tak’m7 Mn-nejajrive Square Yoot
latvll ¢ full+ Hvll
ii) Over €
uuwllz: (utv, utv)
= (o + Cuv) + {va) +(uv)
= Nl + Guw) + Cuovy + 1l
= ul\z+ 2Re((uv)) + | o since 2+Z = Re(2) V¥ 2e(
< “““er 2((u.v)l t IM\Q since Re(i) ¢l2] yae€



<lall + 20l 4 1T by Gonchy e inequlit
(e

= Juril’< (o4 1)’

=> [lwsvll < [[ull + fvll non-negative. squae oot

Cosine Anﬂb,
On veal nney ondud space
-l fivll <<u, v < flall v

= -1¢{n)¢ 1
flw([ fvil

Can wie +his o define +he cosine of +he anale between, u and v

c0s0 = {u,v)

(wlliivi




Mettic on an innev product space

Definition
In any inner product space V, the CoﬂesponJin7 mehic of distance function, i & funclion
d:VxV — R
d(u,v) = lu-vll

The medvic on an inner product space V Satisfies
YuwvweV:
i) (positiviby) dluv)2 0
i (S\,nnmeh«’) dlww) = dlv,n)
i) (riangle nequality): d(uw) € dluw) + dluw)
W) dluy) =0 & uey
Remark: We defined nowm with help of innev product. Then wsed novm to define a medvic.

{mebvic spaces € {novmed Jpaces} ¢ {inner product spaces

vectov space fov which a norm is defined

Examples of normed spaces

In R“, Wik dof pvodchr

os(2) u=('ﬂ:)
Ln, I,
lvll= a4 4
(wv) = J(“h'xl)z+ 4 (‘)n'l.\)z standard Euclidean medvic



ORTHOGONALITY

Let V be an inner product space

Definition 014koﬁona|
Two vechows w,v of an inner product space ave Said +o be odhoaonal if

() =0

Ov’rho?onal vectoys denoted by ulv

Ovthonormal Veckovs

Definition

Aset 5 of non-zevo vectors in an innev product space is said +o be 0'(4|no7ov\a\ if
wlv fov all diskinct paiv of vectors in §

(iud=0 i#j Yviyes

I all ue§ is a unit vector, +hen §is said 4o be orthonovmal

Note if <‘A.V>=O, then. <V,u>=0 since {upv) =€v,u) (over R)
{v,w) = <‘M_V>‘—' 0=0 (over )

For any VeV, we have <V|_Q>= 0O since

<V,Q>: <V;”—”> 'fOY Vuwew

= <V|”> + <V|’”>
= <V|U>" <V|W>
=0

Sinﬂavlt’ {0,L)= 0 Yvev

= 0 vecor ov’rl\ojonal o every vectoy




Any odl\ojonal set in o inney product space V i lineavly independent.
Hence V has dimension, n and S has n elements, S s a basis on V
Proaf
Suppose S €V, subset of non-zero vectors veS vf 0 in V such that
(Wv)=0  Yuves, ntu
Let v, vy be K diskined vectors in §
§={v, -}
Suppose 3 o, -, oln € F 44
oV, 1 4olgVp=0
Take inner product with v;
0=Cv;, 07 ={v;, v, t -4 gy )
':-(V;'o(‘!l') -4 <v;,o¢1vl>

o (v, 1) 4 oty (v oly)
i €v;, ;)
fince vi $0, (Vi,\l,'HO = di=0 ¥

[})

= V; linearly independend.
Note: if (v,, ., v) or-lhojona‘ basis for V,
Then any veV can be vewritten as
VoV, 4tV for Some o), ol €FF
Easy +o find co-efficiends «;
(v;,v> = <V;,v) = (V;, ol V44 o(,\vn>
=y Vi v,) 4 4 o v
= “i(va,vi>
= | o = Lvuv)

lhv; |2




Examples
) Tn R" (with dandard nney dot Produd—)
The standard basis §s ovthonovmal

2) In ﬂZf with standard innev product

B (). (4

form an or’rhojonal basis but not orthormal Since not normal

Can gd orthormal basis b«’ Jivid‘mj each vector lu, norm,

) |-Fers = [

g

. 50y
=) = = (’r/!zz)
2

_|/
(?) RO iy = (2?/{2?)
3 3y

3) In (ﬁz (with standavd Hevmitian inner pvodurf)

1 [
- /5
( B -
 \&

form, orthonormal basis

(k) - Bl s -0



01H\ojona\ and lAnHan, Matvices

Definition. Ovthogonal/aitary
We Say o veal matix QeM,,, (R) i ov+ho7ona| when,
Q'Q=I, (a':¢q")
We Jay a comple mabvices PeM(€) i witary when
=1, (¢T-F")

I) A basis v,V of R is! orthohorpol for the standavd veal inner product
these ave the columns of an ov#hojona‘ matvix Q.
1) A basis v of € is orthonormal for #he standard Hermitian inner product

|

these ave the columns of a uni-fm’ matvix Q.

Proog

n g T 3 T
|) O'\ R, we kave <VJ,V‘>’ VJ I,\_V‘ = VJ \/K

Bacis orthonovmal VJ'T\I,L = SJ

o S the Vi are columns of a matvix @ with QTQ'—'I,\,
2) Gimilar for (*

(like matvis ml’riphcrﬂion)

Remayk : Ovﬂojonal natvices preserve the standard veal imner product on R

Let Q be an nxn ov+k07ona| nin matviy, wveR"
{Qu, Qu) = (Qu)T In (Q\I)
= (@ Qu

= TQrQUL

< uT\l 3 <u.\l>



Jimilavly, wnitavy matvices preserve standard Hewmitian innev product on ¢
if PeM ) is wnitavy, then
P P) = ) Ve
Example

Nvihnj |as+ exmﬂe n m’rvb( {—ovr\,

6 Sl -y
= [V IL 2 7—/I' Iy ovH\ojonal madvif
g "/f 2 Iy

i Y

(/f' /J") unijravv matvix
| 2 | 2

Pto\iec’rion of a vector

Definition

Let \ be an inner product gpace, let weV be a non-2ero vector. The vector

pYo\) (V) %% 7}

is called the projection. of v in diteckion of W or projection of v onbo gp(w)

In R
Note - onju(v) 1w

\

S me—

Juppose that J= {u,, w;} 15 an oﬂko?onal get in an inney product gpace V and that v is any
vector in V. Then the vec-l'ov

W=y -2|__I on‘jm(v) =l y -2' %:,_::%% W;

is orthogonal 4o each veclor in § and consequently o each vector in the span of JinV



For each j=1,+yk we have

<ud-,u> =<UJ WV -,-ZK:T pvojw(v)>

= (u\j,v) ‘iw <wj' ”i>

(i)

= (o) - gd;%/m
J
=0

— wl W) for each UJGS
n

14 v\eJP(J) then ueZo(;u; for Some o F
i\

Jo <u,m> = <N,_tz\ot; u;>
= iiz'd; <”,”i7

=0 = wlu for each u\éJy(S)



GRAM-SCHMIDT PROCESS

Amj finite dimensional inner product space V has an orthonormal basis

Proof (Al}oriﬂm\, 7mponlanl-)
Stavt with any ordeved basis (w,--- ua) ot V. Define
For each j=1,-- K, we have
vy =0y

Vg = Uy - P“Jv,(“?-) = Uy~ EV; Uy v,
Vi, Yy

2
V;= us-onJ,'(“g)'pvkoz(uz) = ua-%l_pvo\jvi(u = uy- Z ':l,, ;
: a-l
Vp = Up ~ voM-M <VMn->V
T ;PJ " j ‘,Z.I_ i i)

Then (V.,---, Vu) 15 an ovH\ogonal basis -}ov V

Tndeed for 1< k<n, we have

VK=(AK-?!_-I <Vi.Mx) Vi

izl (v;,v;)

Rewrite as

Ml— VK + ? <vl “K) Vl

thl

Jo any vy can be writhen as a linear combination of the v; with j4k
Jince W,y gpan V== v, -, vy Span V
= {y, U1 % a Spanning sed of size n and dim(v)=n
= a basis for V
Bl’ lemma 333 v, i ovajonal +o vy, Vy.
Final step: normalize vectors

A . N X .
Ve = %I s & unit vechr = (f:",---,vN) 15 an ovthonormal basis
[ve



Note' Gram-Schmidt process depends on ovdevin7 of W, Un
(kam)e order ~2 diffevent oﬂhoaonal bass
Example apyl,?nj Grram- Jchmid 4 process

) Use Gram-Jchmid4 process to furn +he basis

f]wf). ol

into an orthonormal basis for Wxs, standard innev product (dot ondmt)

|
vz u = (' )
0
) - b

"
T
— vo
~—

ol
)

) Vy= Uy " P’”Jv,(“3 ) P“\)'Vz(u’) T %:'_“:,:%V. i g"z-' :25> B



Normal; Ging

2—) Use Gram-Schmidt 4o construct orthonovmal basis for ¢

JMH;A] with
= (1 =[2
we () e (5)
ur.4 standard Hermitian innev onducml

weue(2)

Vy= Ug~phoj, (hy) = Uy - (Wi, Up) = (2] % Z,) 1
i pfi) =y o) = (2) %()

(2] - B2l

.
]

z(2]-L 1) = f/z '
fu,v2) 6 an ov+h070na( basts for ¢ (") 2'< ') (‘3/2!)
Nomalizin7

vl =J<(”,(11)> = [2
“v‘l.":f((‘:?;i),(ﬂzi)> = E%*(%')(;)

[2

e

Gew =(1a)\ %= v = (Y
il ('/ﬁ) ™ il (-v&)

AN . .
f"uvzy 15 an orthonormal basis



J) Leaend're PO(I’HOMin
V=R, [x]

0=l up=x uJ=f’ u\,‘:x} (standard bas]s)

Wse Gram-Schmidt process +o 3e+ an ov’rkoaonal basis w-r.} ianer pvoducjr

4,99= [He)gle)at
-1

Py = Ua ,
P,= U2~ P'°Jp.(uz) £ “‘z’%nl.:,_‘:%h = X- J.‘:"“‘l 1z

[ g

3

2 (L 2 )
Ps” %-P"’JP.(“’)— P"’Jh(“s) S X - L'l-l: dt 71 J(‘* t dt . .xj— ,/J
-j‘1-u+ f.'k Lt

Py xs-_;lx.

We 3e+ Scaled Lejendie polgnomials
(Han&avd .Scalin, vedefines anﬂ)



Calculations with vespect +o an orkhomovmal basis

Let {vy,..,va] be an ovthonovmal basis for an inner product space V over a field IF (Ror¢)

Fov wueV, lef u'-i_a(;v; \ V=Z_p,-v; fov Jome o(;,p,-élF
i< izl

Then n
i F=R
) (u) = 2‘;'_0( f

1) (Pavseval § idem‘ih’)

2 o;
Jul = ) !

n n
Tf u=) oy V= V;
Hg
Th
" oy = <V;,M>
It F=K:

<u,v) = <u‘ ip;vi> = Z’jr(}, <u,v; b!, lineavi-hj in second ﬂvjumen'l'

= Z’\_ﬁ: <Vi.‘4> s’mmel"ﬁc
i
n

=; pi ol

:idifi
=\

Jo “M“z= () :Z"d'-di - _Zd"iz
izl iz|

Similay for ¢



Examrle

V= C(['K,N],R) and inner pvodud’

($,9)= '7 JTF(J&) 9(1) da

-n

Given an orthonoymal set {‘:_L, cos(lx)s in V, find
2

"
J-ﬁnqx dx  without Compujrinj anhidevivative
R

E-JI:{ | Co‘»('la(.)s orthonomal basis for subspace W of V given b7
w =JF<J__|' cos(Zx))
2

(,) also an inner product on, W.

2
We have Sintx = (Sir\,zx)

d'uex 2 l“cos(u) = L. 14 -_'_) Cos(lx)
2 20 \2
X , .
Jo Jnﬁr\.qx dX = K(Ji»\,x, Jir\x)
2
1 =X "Jir\?JL“



PROJECTIONS

onjecl'iow maps

Definition, Cumrlemn{s/ onjec#ions
Let V be vector gpace, VSV a subspace
i) A COmplemen+ of U 1s & subspace W of V' Juch hat
V=Uew
and Y veV can be wniguely written in form

v=uiw  with wel and weW

i) For V,0)W, the wigue linear map
LV—U
Llv)=u  Yvey
is called the pvo\iecjrior\, onty U alon7 W

i) Furthevmore L:V =5V be a linear transformation. Then given a gubspace Uof V, L is called a
on\jecjrion onto U if it is the prjecﬁor\, onto U alon] some complement of V.

iv) L is called & pvgjec‘fior\, (Map) i Lisa on‘imlior\, from V4o U for jome Subspace U

Let L:v->V be a linear map. Then,
L a projection, <= L'=L
£'f°—°‘£:
Tf Lsa pvojecjr‘:on onto U alonj W, wheve V=UeoW
Then any YveV, v=utw , weV wew
$o we have L(v)zu and L(L(V))=L(u)=u
= (L)) = L)
= =L

Assume L:V—V is a lineay map ith L2=L




Leb Weker(t) and U= ker(T,-L)
Then W and U ave both subspaces of V
Need to show V=U @ W, i.e. ¥ veV, we can write v as
Vaudw  for Jome w,weV
and UAW={0]
Note if veUNWw = ve O=kev(Ty-1) and weker()
(1) ve V= ker(Ti-L) = (Lo-1)(v)=0
= Ilv)-Llv)=0
= v-Lv) =0
= Llv) =y } e
(2) vewszker (L) = L) =0
Hence UNw={0}
Also each VeV can be written as

v=L(v) +v-L(Y)

Noke +hat w=L(v) €Uz ker(Tv-L) since
(1-L)(w) = (To-L)(L(v))
= L(v)-L(L(v))
= L(v)- L(v) 1L
<0 =) =n
and wz=v-L{v)ew=ker(t) Jince
L(9) = Llv-L(+))
< 1L(v) -L(L(v)
= L(v) -L(v)
= 0



This proves that V=00 W
Since L(v)= Llwsw) = Ll 4 L(0)=n
= Listhe prjecton fom, Vo U dlng

Example of Pro\jed?ons
K=vow

U= x-axis

W= ’-axis
Then map RV

(5= ()

15 a pvojechon of R onto x axis (alang ﬂ-ax}s)

e ()0 ()

Jo fK2= VoW wheve U=x axis
W= ling x=y

The map 3-‘!?\2—9U
(3G

pvojechon of R onbo x-axis (a|on7 J.:’)

Everj on\jec-Hon map 15 diajof\ahiaue and has e'ljenvahe) 0and 1 onl-,



Ovﬂ\ojonal (omplemmls and 07‘“\030“0' p‘ro\iedion;

Definition, OH-Irwjona’ Com ,;femenf

14 \(l) is an inner product space and U is a ubspace of V, +hen the of“\o’onod complement of
Vin Ui

U = {vev|{uvd=0 Vweu

ot i a subspace of V

Definition

Let V be an inner pfoo‘unl Jpace. Let L be a pvojechon, of Vo Uk alonj W

If N=Ul, then, we S0y L is the 01+kojonal pvojediom from, V4o W

2
1) V=R
U= x-axis and W=|, axis, then
W= U

w.r.t standard innev product, since

)50 et

The map §: (;) =] (3‘;) 15 $he 0'”\070'\0‘ pro\jecﬁov\, of R onto U

2
2) V=R
nney onduc‘l' = <(;':), (?1'1)> =AYy =X Yy - Xy, 4 Jxlt”‘

This s @ bilinear fom , we can vepresent by a matviy
A=(1 -1
Lis)
AL = (0 %) A [
° <(A)(u)> [ (%)

nner ondw} since A nwmehic and posﬂive definite

sljlvt‘;‘l'EY‘S cvikeveon,




o
-1tho

-|| —t|= 12:3-()) =150
13

e )0 ()

Jo map 3(3;) H(J?ﬂ) s @& pvo\}edﬁon ondo U alon9 W

But <(a;),m> = xy-ay-0y 43040 VuyeR

= w= Ut
Hence g is the or+hojona| projection onto U w-r.t 4his inner product
Example
Let V be an inney product space, ueV o non-zero vechor Then map
Poju V=V

givmbj P"’Ju(")= W) w

w,n

0 & pojection. frm, V4o Gplv)

clearly T (prja)< Splu]

Alio for xesplu), A= Au for Some A€F
P'qu(*)" P'qu()"‘)

=S {WAn/, w
su,u)

2w u

{u,n)

0"

= An=X

= P"{ju 1 a on\jechor\. map.



3. Matrix Vecomposition

Q@R Decomposition
@R Decomposition,
Tt A is a veal mxn mabvix with lineatly independent colwmns (i.c. vank(A)=n), +hen, A can be

factored as
A=QR

where @ isthe mxn matvix with ovihonovmal column vectors, and R is an nxn inverkible uppey
-Hiangnlm! matvix

The deconyosi-lion can be found h, G?P‘!,-Il\ﬂ Gram - Jchmidt process 4o column vechors
W, Uy of A

Then @ consishs of the columns U, vy

Entries of R arve given b',

RJK=<VJ-MK> = <"1i.“,'4k> = §V..'.“z> = LL._LZ<"' “> vl
f gy (0

37 constvuction, R has 0% below +he cl'mgona‘

Example of QR Decomposition,

(Asin? example on, page 11

Aol )

APP‘jiﬂj Gram - Jchmidt

A [0 ~ |5 A [
V= |z V, = 3 vy= -/
0 g 2(fg
1o

i

Y Y3 |
Q= vz Y3 gl = (3.,%,3,)
0 3 Y




RJﬁ(fl\J.uK), ‘H\en{—ove
(AN
* Ry® CHOE ('/éz)‘ (' ) =1L+ =02

o] = (2
* R,,- (v, m,_) <v.,u> <<V| “l)}“vlu 142 = {2
Vi Yy
. Kl.!: ohu:‘):\rlT

VZ,M3> 0 . Kzz:(oz_'u\z):ﬁ
) K3|=<V3, M|>: O ' R32=<03, M,_>= 0

(ﬁ(z‘ ‘/fi)
R={0 0 23
00 'z

'R,_3=<v,_ DE

- K33= VJI “3>

a' “\|N



4. opectral Theorems

SELF ADJOINT LINEAR MAPS

Definition, AdJoint
Let V be an inner pvoduct space, veal ov complex.

Let L:V—V be a linear "ap. The adJoin{' of LY i the lineav map
v—y

('), v) = (L) V uveV

If L= L then we Jay that L 1 a self - adjoint linear map

Adjoint v Duol Map
Recall that if L:V—>W is a linear map, Hhen it has a corresponding dual map
W — v*
between, the coviesponding dual spaces, given by
*(f)=40L , few®

Tn the example, V= R and W=!RM, if Lis 1ep1e5en+ed (w.r.t standard basis) by matyix A, then
L* is vepresented (with tespect 4o the dual of Hhe standavd basis) by the matrix AT,

Using the Same notation 15 not & coincidence
Emr? finike dimensional vector Space Vs 'lsomofyl\'tc to ik dwal space
v v

S0 in the case of a linear map L:V-SV, iks dual map s L% VSV bub wsin
blw V and V% we can choose fo view +he dual Map L0 a map from U o V

oy —v

g an 1somo7phism,

So the dual map can be identified with the adjoint map, hence we wse the fame notation, fov if
both tepresented b', AT

MM\’

'v,omovphisms between, V and v¥. Tf Vis an inner product space, can also wse an inner product
to d

efine an isomovyhisw\, blw V and V¥



Examl;'es of self ad\',oin’f [inea’ Maps
V=R, standard innet product
L:V""'7\/ Ji\lﬂ[ bt)

| ) 1
L: ‘;(N — A ’;4\, where AeM,,{,'K)

Then, ik ao\\join{: 1% v =V s given, b‘]

=% adjoint of L



L Sel{—ad\)om’c = L=1X
E AL
& A ng\e‘nfo

For V finite dimensional, Many 50movp his ms V—V* (one for each choice of basis)

Tt Vis also an inner product space, can define
T:V— VS by
T(v) = v, -)

ve. T takes veV and outpuls the linear functional §- T()ev® whete f:v—F given btj
fo)=Gow) Vel

T s an isomorphism,
Example

V=C with standard Hewidian, prodact and [et
L:V—=V be S'Ner\, bl,
'- ib
HE) ()
Skwing L s self ad\',oin\:
L s gels ad\',o'm‘: & L=t

d

(L)) = CL(8), (&)

({5 (4))

a+ib-c 4 (Ti)-d

<—":><L(u),v>=<u,L(v)> YuwveV
Let u=(t) v-(é\’

A +ibe + aid
() = ((8),L(C)Y = C(5)- (€59))
= % (ctid) 4 b-(-ci)



= aC-beit adi
Expressions eciual = self adjoint
App\" L +o standavd basis, for ¢ b find mabvix 'fepvcsentinq L (wr-t basis)

L((:): (l_{'o-.): <1|)
{8 (4796
A=(; ;) A Hevmitian

-y 0

Eiﬂemldue)

de’r()«_'| Ab) = X-A-170

"

= Az 1tfs
2

Jelf—adjo?n{' operators vs Hermitian, matrices

Let V be an innev product space, L:V =V be a linear map and B be an orthonormal ovdered
basis fov V

Then, L is self-adjoint & Mc(l—) , the matrix vepmenhn’ L wrt 8is Hemitian
Proof:
Let ®=(V1,---,V,\) be an ovthonoymal ovdeved basis for V
Let A=M8(L) be the mabvix vepvesenhng L wvt basis 6
6= Mg(L*) be the matrix vepresenting L* wovt basis 8
Recall

n
L)z D Ay
K=1

$0 b«, |ineavh" in, 2nd a\rjumenl', we have

(V;, L(VJ)> = <v;, %Akj VK>



= 3 g o)
K=|

= A'J

n
L‘(\u)= Z_Bu vy
K=\
<L*<VJ)’ )= <Z B; e VJ'>
K=z
= '\ZBK;. (V“ v">
Kz

= B
So Ay=Bi Vij = A= A*
= A is Hermitian
Assume A Hermitian, and G = vy, v) be an ovfhonovmal basis of V. Let
L:V=V

So

be the lineay map 'YeP‘lesen“'tJ l’j Aurt A
By going backuards direction o{— proof, we get
(L(w), ) = vy L ) Vi eB
Let wyveV with “’Z“(ivl
iz

n
"=_Z|__fli\{,' 4, B¢ €
J'.

Then, <L u) v) < Zdt Zﬂ-_e)v\,>
=1
& <izu_,(;L v;), J_Z':ﬁl‘fl>

- 3 a ey

it gz



The cigenvalues of self - adjoint maps ave veal
Proof:
Let L:v—V be self adjoint
An eijevwa\ue A of L gatisfies
L(v)=Xv o some non-zevo veVl
We have (v L(v)) = (v dv) = Awv)
Jince L self adjoint, we have (o Llv)) = L), v)
= <>w,v) = A{vv)
v$0 =2 {u) 0 (positive definike)
= A=A
= Ael

I)iajonalizabilﬂ;} of self -adjoint maps, and odl\oyoml e?genwd'ovs

A lineav map L:V—V on a finite dimensional vector space 15 said to be

V has a basis of eiﬂenventoﬂ

§

minimal poh’non?al d,_(i) of L -fac’rovin7 into distinct lineay factors (no repeat vook)



Evey Je|-f-adjoinf L:V—V on a finite dimensional cmFlex inney product space V is
diagonaliaable

M_-‘ (b-’ conbradichion):
Jince we ave working over €, every non-constant po|9nonial is & product of linear factors

S0 d,(x) minimal Pol,nonial of L is a product of linear foctors

L diajonahzable & 4,(2) hos no vepeated facton
14 d,_(dt) has refemled factors, then,
d (x)= (i-l)zp(m) for some  polynomial plx)

Hence

0 (1)=(L-TA) plt) =0

bt 3 veV such that ((L-AT) p(L)v)# 0
Hence
C((L-A1) p(L) (v), ((L-2T) p(L) (W) £ 0
Noke thet since L s self adjoint, for any uy,up€V, we have
<(L'/\I)(u.), ny) = (L(w)-Au,, u)
= {Llw), wp) = A, )
= {Llw), u) - Aw,u,)
= (uy, Llung)-Qa,)
=Sy, (1-2T)(w))
So 4 becomes
0 (W)W, (t-21) (W) = pw)(), 0) = 0
(ontradiction, g
Hence dy() facton inde diskinct linear factors = diagonalizable



Evevy self-adjoint linear map L:V—V on a finite dimensional veal inner product space is
diagonalizable

panf
Let V be a veal finike dimensional inner product space
LV be self adjoint
Let A be the matvix of L vt some ovthonormal basis of V
Then, by prop pg 86 A is Hewmitian (Ako A is vedl = Sl’mme'l'f'uc)

Let T: € = (" be 4he lineay map whose mabvix wrt the standavd basis fo s A
Then, by prop pg 86 T i self adjoint
prop pq 83, eijerwalues ate Yeal

prop P9 89 T diajonaliza“e = mininal pol,nor\?al dT(x) s a product of diskincd

linear factors
(of fom, x-A€R )
dy is also the minimal polynomial of A == minimal polynomial of L
= Lis d'm,or\a‘iiuue

If LoV sa self ad\ioin* linear map, then any 2 e'ujemlec’roﬁ of L associated +o
eigenva‘ucs are on‘hoqonal

Proof -
Let vy, v be eigenvectors of L with tigenvluts of L with eigenvaluey Nyl N EM

(o, L)) = (o 20y)
= Xy, 0y)
L sel4 adjoint
Lo, L)) = (L), ) = (A, )
= 3w, w)



= Aln, ) eigenvaluey veal | ¢elf adjoint nap

= Ahm)= 2 ()
= (?u'/\'s) ("l, ) =0
H
,
SPechval Theorems
Jpccha‘ Theovem for Je|f-ad\joinf linear +1m-[-oma{im,s
Let V be finite dimensional vectov space (conplex or real) inney product space, and let
L:V—V

be a self-adjoint map on V. Then, 3 an orthonovmal basis for V such hat the matvix qusenhn]
L w.rt +hat basis is diaaor\a‘ vith all enbnies veal

Prood:
Jince L i diagonah%aue. we have
V=8 ker(L-T)
and lu} prop pg 90, each kemel 1 or+hojonal 4o all others.
usinj Gram- Schmidt process, we may choose an orthonormal basis fof each Kevnel.
Hence, we have an otthonormal basis of eijenvecjrovs for V. which diagonalizesl.
§o mabiix wrbk Hhis basis s diagonalieauc, veal o
Spectval Theovem, for Hermjtian, mabices
Any complen Hemitian nxn mabrix A'is diagonalizable, all its eigenvalues ave veal

The basis of eigenvectors dia ona‘iﬁr\j A can be chosen, %o be orthonormal for the standavd
Hevmitian, innev* product on &"9

Hence ] aun'&aw, matvix U such +hat
U—iAU 5 diagona‘



Am, vea chmmehic nin mabvix A s diaﬂor\aliiaue, and all is ei,en\mlues ave vea|

The basis of e?yem'lLecl'ovs dia?onahzin? A can be chosen, $o be orthonovmal for the standavd
inner product ori R

Hence 3 an ono,onA mabriy @ 4.4
Q-|AQ 18 diaaonal

ExanP|es

Find a un#av, matrix A +hat dia,onahzes

(i)

A is Hamibian & A+=A
= we can find such o matrix

-_—0 -

—-.Oo =
o N o

Find'mj ei,et\va\ucs of A,
dt(AT-A) = (A-2) A=0 => )=0, A=2
Eigcnspacc of *A=2: kewl(A—ZI)-’- Jp{ (a) ) (i){

A=0° ker(A)= Jp{(im -l

1
0
v

Dia,onaliia“c

P<

wikh 4
PAP-=

But P i not unﬂau] (since colamns not odkonomal)

1
0
v

o OPN —/—/ —~

S oo PR~

0
2
0

Let w,uy,uy be columns of D.

B’ prop 4.3, Uy lug, nylug (s}nce eijenuahes distinct)
Apply G5 process 4o w, ug



VI:M|

vl:“r%'"—:’%vn I (?)

0
Then, fvl.vz,uﬁ 15 an orﬂojona‘ basis
Novmalise. Hence

('/’i 0 '/ﬁ)
V=0 1 0
iR 0 iffZ



ISOMETRIES AND NORMAL MATRICES

[sometries

Definition, IsomeJm,

A linear map L:V—V on an inner product space V is an, isometry if it preserves the innev product

T T IE G

The eigenvalues of an sometry hove modulus 1
Proof
Let V be a complex innev prodmct space.
Let L:V—V be an isometry
Let v be on eigenvector of L, eigenvalug X
v#0 and L(v)=)v
We have
(uv) = (L), L0D) = Qwy ) = A2 )
= [l ¢u)
fince v10, (wv) $0 = |A\2= 1
= Ixl=1

Let V be a finite dimensional complex innev product space. Let
Liv—y

be an '|Som4n’. Then, +heve 15 a basis for V dia,ona‘iiing L



Spectral Theorem for isometvies

Let L be an 'lsome+n, on & finite dimensional complex inner product space V.
Theve exisks an orthonormal basis for V velakive 4o which +he mabvix of L is d;agonal, with all
eigemalues havin7 modulus 1

Jpectral Theorem for unitary matvices

A §quave complex square matvix is unHan’

§

v's U+ &  columns ave ovthonormal wvt standard Hemitian,

infiev product.

Let V be a CDmPleX inner product space,
Ly —V
be a lineat map and 6= (vi,1v) be an ovthonowmal ovdered basis for V

Then, L is an isom{'v'j — MB(L) s un?l:aw’

An eigenvalue A of & wnitary mabria Jatisfies [Al=1

The eigenvalues of an ovH\oaona\ mabvix (over R), if they exist, ave 1 ov -1

Jpecha‘ Theovem for Mnihv? matvices
Am’ wﬁ{anﬁ mabyvix U is diaaona\izable, and all ibs e?,erwalues have absolute value 1.

The basis of eiﬂerwealovs diagonalii?n, U can be chosen, to be ovthonovmal fov the standard
Hermition inner” product on €



Nomal Matyices and Commfing linear mays

Definition, Novmal

A conP|ex square matvix A is said to be nomal if i commutes with ik con\jugafe Evans pose

AAt- ATA

Hermitian, veal Symmetric, Mnifm/’ and (veal) ovl:h,onal matvices ave all novmal

Definition, Invaviant Subspace
T L:V—V be a linear map, U is a subspace of V.
U is said to be an, invaviont Subspace for L if
LweU  YueU
This is equivalent o faying we con testrict +he map L o U
Llu: U—U defined by
LI (W=L0)  Vuey

defines a linear map

Let A,B:V—V be Commhnj lineay opevalm, i-e.
AB = BA
Then any eigenspace for A is an, invaviant subspace for B
yool :
Let A,B:V—>V be linear maps with AB= BA
Let A be an ei9en,Va|ue of A, v be an eijev\vedov of A
VeV, = ker (A-)T) corresponding - eigenspace

As(v) = A(n(v)
= (84)(v)
z B(A(v))



= B(av)
A8(v)

= B(v) % an eiaelwec‘,'ov for A wvith eigm,valuc A
B(V) é V;\

Va is an invaviant subspacer ot B

Simultaneons .Diagonalisabﬂhl, and Jiaaonaliial»ilijr’ ln’ unﬂawj matvices

Let V be a finite dimensional vectoy space

Let (Ai};q be a -fmjlv of commﬂng linear opevatovs V=V, and assume A; is diayona'-‘iu%le
fox every i

Then, the A; ave , Meaning there exists a basis of V w-v.t which,
oll A; ave vepresented by diaﬂonal matvices

A §quare matvix A can, be d}ajonahzed 57 a lMHM, matrix

0

A s novmal



