

1 Abstract Linear Algebra

VECTOR SPACES

To do linear combinations, we need to be able to scale and add

Examples of Linear Combinations

1) Polynomials

$\mathbb{R}_n[X]$: set of polynomials in x with real coefficients of degree $\leq n$

$$\mathbb{R}_n[X] = \{\alpha_0 + \alpha_1 x + \dots + \alpha_n x^n \mid \alpha_j \in \mathbb{R}, 0 \leq j \leq n\}$$

► Linear Combination: $\forall a, b \in \mathbb{R}$

$$\begin{aligned} & a(\alpha_0 + \alpha_1 x + \dots + \alpha_n x^n) + b(\beta_0 + \beta_1 x + \dots + \beta_n x^n) \\ &= \sum_{j=0}^n (a\alpha_j + b\beta_j) x^j. \end{aligned}$$

► Zero Polynomial: Let $\alpha_j = 0 \quad \forall j$

Note: Also works for $\mathbb{C}_n[X]$

2) Functions:

$\mathcal{F}([a, b], \mathbb{R})$: set of real valued functions

$$f: [a, b] \rightarrow \mathbb{R} \quad ([a, b] \subseteq \mathbb{R} \text{ is an interval})$$

► Linear Combination: For $f, g \in \mathcal{F}([a, b], \mathbb{R})$ and $\alpha, \beta \in \mathbb{R}$, define function

$$(\alpha f + \beta g)(x) = \alpha f(x) + \beta g(x) \quad \forall x \in [a, b]$$

► Zero function: $0(x) = 0 \quad \forall x \in [a, b]$

Note: $\mathbb{R}_n[X] \subseteq \mathcal{F}([a, b], \mathbb{R})$

For any n and linear combination rule in $\mathbb{R}_n[X]$ agrees with rule in $\mathcal{F}([a, b], \mathbb{R})$

3) Matrices: $M_{p \times n}(\mathbb{F})$: set of $p \times n$ matrices with entries in $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$

► Linear Combination: matrix addition and scalar multiplication of matrices

Let $A = (a_{jk})$, $B = (b_{jk})$, $\alpha, \beta \in \mathbb{F}$ (j, k) -entry given by

$$(\alpha A + \beta B)_{jk} = \alpha a_{jk} + \beta b_{jk}$$

► Zero Matrix: $0_{p \times n} \in M_{p \times n}(\mathbb{F})$

Definition of a Vector Space

Definition, Vector Space

Let \mathbb{F} be a field (usually \mathbb{R} or \mathbb{C}). A vector space over \mathbb{F} is a set V together with binary operations

vector addition,

$$V \times V \rightarrow V$$

$$(u, v) \mapsto (u+v)$$

scalar multiplication,

$$\mathbb{F} \times V \rightarrow V$$

$$(\alpha, v) \mapsto \alpha v$$

(A1) commutativity over addition,

$$u+v=v+u \quad \forall u, v \in V$$

(A2) associativity over addition,

$$u+(v+w) = (u+v)+w \quad \forall u, v, w \in V$$

(A3) 0 vector

$$\exists 0 \in V \text{ such that } 0+v=v \quad \forall v \in V$$

(A4) Inverse

Given any $v \in V$, $\exists -v \in V$ with $(-v)+v=0$

(M1) Distributivity

$$\alpha(u+v) = \alpha u + \beta v \quad \forall \alpha \in \mathbb{F}, u, v \in V$$

(M2) Scalar Multiplication,

$$\alpha(\beta v) = (\alpha\beta)v \quad \forall \alpha, \beta \in \mathbb{F} \text{ and } v \in V$$

(M3) Distributivity

$$(\alpha+\beta)v = \alpha v + \beta v \quad \forall \alpha, \beta \in \mathbb{F}, v \in V$$

(M4) Multiplicative Identity

$$1v=v \quad \forall v \in V \quad (\text{where } 1 \in \mathbb{F} \text{ is the usual 1})$$

► 0 is the **Zero vector**

► **Real Vector Space**: Vector Space over \mathbb{R}

Complex Vector Space: Vector Space over \mathbb{C}

► A **vector** is an element of a vector space

► Given a vector space V over a field \mathbb{F} , any $\alpha \in \mathbb{F}$ is a **scalar**

Note

i) Being binary operation implies V is closed under linear combination

$$\forall u, v \in \mathbb{F} \text{ and any } \alpha \in \mathbb{F}, \quad u+v \in V, \quad \alpha v \in V$$

ii) Axioms A1 - A4 together with binary operation, addition, is an abelian group

Examples of Vector Space

1) \mathbb{F}^n is a vector space over \mathbb{F} with obvious definitions of vector addition, and multiplication

$$\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} + \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} \alpha_1 + \beta_1 \\ \vdots \\ \alpha_n + \beta_n \end{pmatrix} \in \mathbb{F}^n$$

$$s \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} s\alpha_1 \\ \vdots \\ s\alpha_n \end{pmatrix} \in \mathbb{F}^n \quad \forall s \in \mathbb{F}$$

2) All examples on page 2

3) The **trivial vector space** $\{\underline{0}\}$ is a vector field over any field \mathbb{F}

$$\underline{0} = \underline{0} + \underline{0}, \quad \alpha \underline{0} = \underline{0} \quad \forall \alpha \in \mathbb{F}$$

4) **Field of order 2** (order is cardinality)

$$\mathbb{F} = \mathbb{F}_2 = \{\underline{0}, \underline{1}\}$$

order

Field operation: modular arithmetic

$$\begin{array}{c|cc} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \end{array} \quad \begin{array}{c|cc} \cdot & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \end{array}$$

Note: Any finite field must have order of a prime power

$$\mathbb{F} = \mathbb{F}_n \quad \text{where } n = p^a \quad a \in \mathbb{N}, \quad p \text{ prime}$$

order

4) \mathbb{F}_2^3 : vector space of 3-dimensional column vectors with entries in \mathbb{F}_2

$$|\mathbb{F}_2^3| = 2 \cdot 2 \cdot 2 = 8$$

$$\mathbb{F}_2^3 = \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

5) Diagonal Matrix Space:

Let V_1 be the set of $n \times n$ diagonal matrix

For 2 elements of V_1 ,

$$u = \begin{pmatrix} \alpha_1 & & 0 \\ & \alpha_2 & \\ 0 & & \ddots & 0 \\ & & & \alpha_n \end{pmatrix}$$

$$v = \begin{pmatrix} \beta_1 & & 0 \\ & \beta_2 & \\ 0 & & \ddots & 0 \\ & & & \beta_n \end{pmatrix}$$

Addition: $u+v = \begin{pmatrix} \alpha_1 & & 0 \\ & \alpha_2 & \\ 0 & & \ddots & 0 \\ & & & \alpha_n \end{pmatrix} + \begin{pmatrix} \beta_1 & & 0 \\ & \beta_2 & \\ 0 & & \ddots & 0 \\ & & & \beta_n \end{pmatrix} = \begin{pmatrix} \alpha_1 + \beta_1 & & 0 \\ & \alpha_2 + \beta_2 & \\ 0 & & \ddots & 0 \\ & & & \alpha_n + \beta_n \end{pmatrix}$

Scalar Multiplication: $\forall \gamma \in \mathbb{R}$, $\gamma \begin{pmatrix} \alpha_1 & & 0 \\ & \alpha_2 & \\ 0 & & \ddots & 0 \\ & & & \alpha_n \end{pmatrix} = \begin{pmatrix} \gamma \alpha_1 & & 0 \\ & \gamma \alpha_2 & \\ 0 & & \ddots & 0 \\ & & & \gamma \alpha_n \end{pmatrix}$

So V_1 is a vector space over \mathbb{R}

Note: This is basically same as \mathbb{R}^n , just change of notation

Can show

$$\varphi: V_1 \longrightarrow \mathbb{R}$$

$$\begin{pmatrix} \alpha_1 & & & 0 \\ & \ddots & & \\ & & \ddots & \\ 0 & & & \alpha_n \end{pmatrix} \longmapsto \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \text{ is an isomorphism}$$

6) $V_2 \subseteq V_1$ be the set of matrices with positive diagonal entries

Let

$$u = \begin{pmatrix} \alpha_1 & & 0 \\ & \alpha_2 & \\ 0 & & \ddots & 0 \\ & & & \alpha_n \end{pmatrix}$$

$$v = \begin{pmatrix} \beta_1 & & 0 \\ & \beta_2 & \\ 0 & & \ddots & 0 \\ & & & \beta_n \end{pmatrix} \quad \alpha_i, \beta_i > 0$$

Define "vector addition" and "scalar multiplication" by

$$u+v = \begin{pmatrix} \alpha_1\beta_1 & & 0 \\ \alpha_2\beta_2 & \ddots & \\ 0 & & \alpha_n\beta_n \end{pmatrix}$$

$$\gamma u = \begin{pmatrix} \alpha_1^\gamma & & 0 \\ \alpha_2^\gamma & \ddots & \\ 0 & & \alpha_n^\gamma \end{pmatrix} \quad \gamma \in \mathbb{R}$$

Recall: $\alpha_j^\gamma = \exp(\gamma \log(\alpha_j))$ so only makes sense for $\alpha_j > 0$

Then V_2 is a vector space

Proof:

$$(A1) \quad u+v = \begin{pmatrix} \alpha_1\beta_1 & & \\ \ddots & \ddots & \\ & & \alpha_n\beta_n \end{pmatrix} = \begin{pmatrix} \beta_1\alpha_1 & & \\ \ddots & \ddots & \\ & & \beta_n\alpha_n \end{pmatrix} = v+u$$

(M3) For $\gamma, \lambda \in \mathbb{R}$, $(\gamma + \lambda)u = \gamma u + \lambda u$

$$\text{since } \alpha_j^{\gamma+\lambda} = \alpha_j^\gamma \alpha_j^\lambda$$

(A4) Identity: $0 = I_n$

Matrices need to be diagonal

Note: Operations from V_1 would **NOT** work on V_2 since for $v \in V_2$, need negative entries to form $-v$, $-v \notin V_2$, i.e. A4 fails

- V_2 is **not** a subspace of V_1 since $0 \in V_1$ not in V_2 , $0 \notin V_2$

Linear Combination

Definition Linear Combination

Given vectors $v_1, \dots, v_q \in V$ and scalars $\alpha_1, \dots, \alpha_q \in F$, the sum

$$\alpha_1 v_1 + \dots + \alpha_q v_q = \sum_{j=1}^q \alpha_j v_j$$

is called the **linear combination**.

Linear Subspace

Definition Subspaces

A subset $S \subseteq V$ is called a **subspace** (or **linear subspace**) of V if

(S1) $S \neq \emptyset$

(S2) $\underline{0} \in S$

(S3) $\forall \underline{v}_1, \dots, \underline{v}_q \in S, \alpha_1 \underline{v}_1 + \dots + \alpha_q \underline{v}_q \in S$ (closed under linear combination)

Linear Dependence/Independence

Definition Linear dependence

A collection of vectors $\mathcal{C} = \{\underline{v}_1, \dots, \underline{v}_q\} \subseteq V$ is **linearly dependant**

if $\exists (\alpha_1, \dots, \alpha_q) \in \mathbb{F}^q \setminus \{(0, \dots, 0)\}$ s.t

$$\alpha_1 \underline{v}_1 + \dots + \alpha_q \underline{v}_q = \underline{0}$$

Otherwise, we say $\underline{v}_1, \dots, \underline{v}_q$ are **linearly independant**

Definition Linear independence

$\underline{v}_1, \dots, \underline{v}_q$ are **linearly independent** if

$$\alpha_1 \underline{v}_1 + \dots + \alpha_q \underline{v}_q = \underline{0} \implies \alpha_1 = 0, \dots, \alpha_q = 0$$

Spans

Definition Span

Let $\mathcal{C} \subseteq V$ be a non-empty collection of vectors.

The **span** of \mathcal{C} denoted

$$\text{Sp}(\mathcal{C})$$

is the set of all linear combination of \mathcal{C}

$$\text{Sp}(\mathcal{C}) = \{ \underline{u} \in \mathbb{F}^n \mid \underline{u} = \alpha_1 \underline{v}_1 + \dots + \alpha_n \underline{v}_n \text{ for some } \alpha_i \in \mathbb{F}, \underline{v}_i \in S \}$$

By convention,

$$\text{Sp}(\emptyset) = \{ \underline{0} \}$$

Basis

Definition Basis

Let $S \subseteq V$ be a non-trivial $S \neq \{0\}$ subspace of \mathbb{F}^n ,

A collection $B = \{\underline{v}_1, \dots, \underline{v}_q\} \subseteq S$ forms a **basis** if

- i) $\underline{v}_1, \dots, \underline{v}_q$ is linearly independent
- ii) $\text{sp}(\underline{v}_1, \dots, \underline{v}_q) = S$

By definition,

basis of $\{0\}$ is \emptyset

Lemma

For any $\underline{c} \in \mathbb{F}^n$, $\underline{c} \neq 0$,

$\text{sp}(\underline{c})$ is a **subspace** of \mathbb{F}^n

In fact, $\text{sp}(\underline{c})$ is the smallest subspace of \mathbb{F}^n containing \underline{c} , i.e.

if $S \subseteq \mathbb{F}^n$ is any subspace with $\underline{c} \in S$, then $\text{sp}(\underline{c}) \subseteq S$

Proof: See part 1

Examples of subspaces

1) Every vector space V contains a $\underline{0} \in V$

Trivial Subspace: $\{\underline{0}\} \subseteq V$ is a subspace

2) $\mathbb{R}[x]$: set of polynomials in x with real coefficients of any degree

$\forall n \in \mathbb{N}$, $\mathbb{R}_n[x] \subseteq \mathbb{R}[x]$ is a subspace for every n

Basis: $\mathbb{R}_n[x] \cdot \{1, x, x^2, \dots, x^n\}$
 \uparrow
 $\text{deg} \leq n$

Basis for $\mathbb{R}[x]$: $\{1, x, x^2, \dots\}$ infinite basis

3) Matrices:

$M_{p \times n}(\mathbb{F})$: vector space of $p \times n$ matrices

Standard Basis:

$\{E_{jk} \mid 1 \leq j \leq p, 1 \leq k \leq n\}$ where E_{jk} is the matrix with 1 in jk -entry, 0 elsewhere

4) $M_{2 \times 2}(\mathbb{R})$:

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad E_{21} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$E_{12} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \quad E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

5) Let $C([a, b], \mathbb{R})$ be the set of continuous functions: $f: [a, b] \rightarrow \mathbb{R}$

Then $C([a, b], \mathbb{R}) \subseteq \mathcal{F}([a, b], \mathbb{R})$

Identity: The 0 function: $0: [a, b] \rightarrow \mathbb{R}$

$$0(x) = 0 \quad \forall x \in [a, b]$$

is constant, hence continuous

Linear Combination: If $f, g \in C([a, b], \mathbb{R}) \subseteq \mathcal{F}([a, b], \mathbb{R})$, then

$\alpha f + \beta g \in \mathcal{F}([a, b], \mathbb{R})$ is continuous

$$\Rightarrow \alpha f + \beta g \in C([a, b], \mathbb{R})$$

Hence $C([a, b], \mathbb{R})$ is a subspace

6) Let $I([a, b], \mathbb{R}) \subseteq \mathcal{F}([a, b], \mathbb{R})$ is the set of all integrable functions

$$f: [a, b] \rightarrow \mathbb{R}$$

such that integral

$$\int_a^b f(x) dx \text{ exists}$$

0 is integrable

Linear combination of integrable functions is integrable

Hence $I([a, b], \mathbb{R}) \subseteq \mathcal{F}([a, b], \mathbb{R})$ is a subspace

Continuous functions are integrable.

$C([a, b], \mathbb{R})$ is a subspace of $I([a, b], \mathbb{R})$

Note: $\mathbb{R}_n[X] \subseteq \mathbb{R}[X] \subseteq C([a,b], \mathbb{R}) \subseteq I([a,b], \mathbb{R}) \subseteq \mathcal{F}([a,b], \mathbb{R})$

These are all \subsetneq as $a < b$

7) In $\mathcal{F}([0, 2\pi], \mathbb{R})$ are $x, \sin(x), e^x$ linearly independent

Consider $\alpha x + \beta \sin(x) + \gamma e^x = 0$

Need to hold for all $x \in [0, 2\pi]$

At $x=0$, $\gamma e^0 = 0 \Rightarrow \gamma = 0$

$$\Rightarrow \alpha x + \beta \sin(x) = 0$$

$$\Rightarrow \alpha + \beta \cos(x) = 0 \quad \text{differentiating}$$

$$x = \frac{\pi}{2} : \alpha = 0$$

Hence

$$\beta \sin(x) = 0 \quad \forall x \in [0, 2\pi] \Rightarrow \beta = 0$$

$$\mathbb{R}[X] \subseteq C([a,b], \mathbb{R}) \subseteq I([a,b], \mathbb{R}) \subseteq \mathcal{F}([a,b], \mathbb{R})$$

can't have finite basis

Aside: Basis for $C([a,b], \mathbb{R})$?

Can't use Taylor series; not linear combinations of $\{1, x, x^2, \dots\}$ since linear combinations are finite sum

upshot: every vector space has a basis, but can be impossible to describe it for ∞ dim. spaces

Dimensions

Definition, Dimensions

For any subspace $S \subseteq V$, we define dimension of S by

$$\dim(S) = \#(\text{basis of } S) \quad \text{cardinality}$$

Theorem

Let V be a vector space of over \mathbb{F} with a finite basis. Then every basis of V has the same number of elements

Note: Steinitz Exchange Lemma holds for any vector space with a finite basis

Properties of dimensions and basis

Lemma

Let V be an n -dimensional vector space. $S \subseteq V$ be a subspace. Then S has a finite basis.

Let $q = \dim(S)$

(i) Every linearly independent set of vectors $\{\underline{u}_1, \dots, \underline{u}_t\} \subset S$ can be extended to a basis of S .

(ii) Any linearly independent subset \mathcal{Q} has no more than q elements.

(iii) Any linearly independent subset $\mathcal{Q} \subseteq \mathbb{F}^n$ can be extended to a basis of \mathbb{F}^n .

(iv) Any finite spanning set for S contains a basis of S .

Hence no subset containing fewer than q elements spans S .

(v) Any linearly independent subset of S containing q elements spans S so it is a basis of S .

Similarly if a set of size q spans S then it is linearly independent and its a basis.

(vi) If $q=0$, then $S = \{0\}$. If $q=n$, then $S = \mathbb{F}^n$.

Examples:

i) $\mathbb{R}_n[x]$: $n+1$ dimension, since it has basis $\{1, x, \dots, x^n\}$

ii) $M_{p \times n}(\mathbb{F})$: has dim $p \cdot n$, standard basis

iii) Let $V = M_{2 \times 2}(\mathbb{R})$

$S \subseteq V$: Symmetric matrix is a subspace

Proof:

i) $\forall A, B \in S, \alpha, \beta \in \mathbb{R}$

$$(\alpha A + \beta B)^T = \alpha A^T + \beta B^T$$

$$= \alpha A + \beta B \quad \text{symmetric} \implies A^T = A$$

$$\Rightarrow \alpha A + \beta B \in S$$

ii) $0_{n \times n}$ is symmetric $\implies 0 \in S$

$M_{2x2}(\mathbb{R})$ has $\dim 4 \implies \dim(S) \leq 4$

We can write elements of S uniquely as

$$\begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} = \alpha \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \beta \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \gamma \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$\implies \mathcal{B} = \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ is a basis for S

$$\implies \dim(S) = 3$$

Another way to see this, is

$$\begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix}$$

has 3 free variables $\implies 3$ basis and $\dim S = 3$

We can extend basis of S to V by adding one more linearly independent matrix. To find just find one not in span of \mathcal{B}

$$M \notin \text{Sp}(\mathcal{B}) \implies M \notin S$$

$\implies M$ is **not** symmetric

Let M = any matrix outside S , example

$$E_{12} - E_{21} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

DIRECT SUMS

Direct Sums

Definition Sum of Subspaces

Let V be a vector space

Let $S_1, \dots, S_q \subset V$ be subspaces. Then **sum**

$$S_1 + S_2 + \dots + S_q = \text{Sp}(S_1 \cup \dots \cup S_q) = \{ \alpha_1 v_1 + \dots + \alpha_q v_q \mid \alpha_j \in \mathbb{F}, v_j \in S_j \}$$

When

$$S_j \cap \left(\sum_{k \neq j} S_k \right) = \{0\} \quad \forall 1 \leq j \leq q$$

we call this the **direct sum** denoted

$$S_1 \oplus S_2 \oplus \dots \oplus S_q = \bigoplus_{j=1}^q S_j$$

Theorem

For any subspaces $S_1, \dots, S_q \in V$

(i) $S_1 \cap \dots \cap S_q$ is a subspace

(ii) $S_1 + \dots + S_q$ is a subspace

Proof: Part 1

Lemma

Let S_1, S_2 be subspaces of vector space V . Then

$$\dim(S_1 + S_2) = \dim(S_1) + \dim(S_2) - \dim(S_1 \cap S_2)$$

In particular for direct sum

$$\dim(S_1 \oplus S_2) = \dim(S_1) + \dim(S_2)$$

Lemma

Let $S_1 \oplus S_2 \oplus \dots \oplus S_q$ be a direct sum of subspaces and

$v_j \in S_j \setminus \{0\}$ (non-zero) for $j = 1, \dots, q$

Then v_1, \dots, v_q are linearly independent

LINEAR MAPS

Definition Linear Maps

Let V, W be vector spaces over the same field \mathbb{F} .

A map $L: V \rightarrow W$ is called **linear map** if

$$L(\alpha \underline{u} + \beta \underline{v}) = \alpha L(\underline{u}) + \beta L(\underline{v}) \quad \forall \alpha, \beta \in \mathbb{F}, \forall \underline{u}, \underline{v} \in V$$

In abstract algebra, linear maps are referred to as **vector space homomorphism**, since they like other homomorphisms, they are structure-preserving maps.

Therefore we denote the **set of all linear maps from V to W** by

$$\text{Hom}(V, W)$$

Lemma

Let U, V, W be vector spaces over the same field \mathbb{F} .

If $L, M \in \text{Hom}(V, W)$ and $\alpha, \beta \in \mathbb{F}$. Then $\alpha L + \beta M$ defined by

$$(\alpha L + \beta M)(v) = \alpha L(v) + \beta M(v) \quad v \in V$$

is also a linear map.

Also if $L \in \text{Hom}(V, W)$ and $K \in \text{Hom}(U, V)$, then the composite

$$L \circ K \in \text{Hom}(U, W)$$

Matrix representing linear maps

Let V and W be finite dimensional vector space.

Pick an ordered basis for V and W

- (v_1, v_2, \dots, v_n) be a basis for V
- (w_1, w_2, \dots, w_n) be a ordered basis W .

The linear map $L: V \rightarrow W$ can be represented by an $m \times n$ matrix whose j th column is given by $L(v_j)$

$$L(v_j) = \alpha_1 w_1 + \alpha_2 w_2 + \dots + \alpha_m w_m \mapsto \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{pmatrix}$$

co-efficients

Examples of matrices representing Linear maps.

1) $V = \mathbb{R}_2[x]$

$L: V \rightarrow V$

$$p(x) \mapsto p'(x)$$

This is a linear map since differentiation is a linear operation

$$(f+g)' = f' + g'$$

$$(\alpha f)' = \alpha f'$$

Explicitly

$$L(\alpha_0 + \alpha_1 x + \alpha_2 x^2) = \alpha_1 + 2\alpha_2 x$$

An ordered basis for V is

$$(v_1, v_2, v_3) = (1, x, x^2)$$

Calculating effect of L on basis

$$L(v_1) = L(1) = 0 \cdot 1 + 0 \cdot x + 0 \cdot x^2$$

$$L(v_2) = L(x) = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^2$$

$$L(v_3) = L(x^2) = 0 \cdot 1 + 2 \cdot x + 0 \cdot x^2$$

So matrix representing L is

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

↑

jth column consists of co-efficients of $L(v_j)$ w.r.t this basis

2) Let $V = M_{2 \times 2}(\mathbb{R})$

$L: V \rightarrow V$ given by

$$L(A) = A^T$$

We saw above, transpose respects linear combination $\implies L$ is a linear map.

Pick an ordered basis for V

$$v_1 = E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad v_2 = E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad v_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Calculating effect of L on basis

$$L(v_1) = v_1 = 1 \cdot v_1 + 0 \cdot v_2 + 0 \cdot v_3 + 0 \cdot v_4$$

$$L(v_2) = v_3 = 0 \cdot v_1 + 0 \cdot v_2 + 1 \cdot v_3 + 0 \cdot v_4$$

$$L(v_3) = v_2 = 0 \cdot v_1 + 1 \cdot v_2 + 0 \cdot v_3 + 0 \cdot v_4$$

$$L(v_4) = v_4 = 0 \cdot v_1 + 0 \cdot v_2 + 0 \cdot v_3 + 1 \cdot v_4$$

So matrix representing L is

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

3) $V = \mathbb{R}[x]$

$$L: V \rightarrow V; p(x) \mapsto p'(x)$$

L is still linear.

$\mathbb{R}[x]$ does not have a finite basis \implies no matrix representation.

4) $V = I([a, b], \mathbb{R})$ and define

$$L: V \rightarrow V$$

$$L(f) = \int_a^x f(t) dt$$

Fundamental Theorem of Calculus tells us that

$L(f)$ itself is integrable $\implies L(f) \in V$

\implies well-defined map

Integration is a linear map $\implies L$ is a linear map.

But $I([a, b], \mathbb{R})$ is **not** finite dimensional \implies cannot represent L by a matrix.

Images and Kernels

Definition Image and Kernel

Let L be a Linear map from V to W ; $L: V \rightarrow W$

Image of L : $\text{Im}(L) = \{w \in W \mid w = L(v) \text{ for some } v \in V\}$

Kernel of L : $\text{Ker}(L) = \{v \in V \mid L(v) = 0\}$ also called null-space

Lemma

Suppose L is a linear map $L: V \rightarrow W$

- $\text{Im}(L)$ is a subspace of W
- $\text{Ker}(L)$ is a subspace of V

If V has a finite basis $\{v_1, \dots, v_n\}$ then $\text{Im}(L)$ is spanned by

$$L(v_1), \dots, L(v_n)$$

Proof: proof of last part

Assume $L: V \rightarrow W$ is a linear map, V has basis

Let $w \in \text{Im}(L) \implies w = L(v)$ for some $v \in V$

We can write $v = \alpha_1 v_1 + \dots + \alpha_n v_n$ for some $\alpha_1, \dots, \alpha_n \in F$

$$\begin{aligned} w &= L(v) = L(\alpha_1 v_1 + \dots + \alpha_n v_n) \\ &= \alpha_1 L(v_1) + \dots + \alpha_n L(v_n) \end{aligned}$$

$$\implies w \in \text{Span}(L(v_1), \dots, L(v_n))$$

$$\implies \text{Im}(L) \subseteq \text{Span}(L(v_1), \dots, L(v_n))$$

The other inclusion in the other direction is true since by definition, each

$$L(v_j) \in \text{Im}(L)$$

So we get

$$\text{Im}(L) = \text{Span}(L(v_1), \dots, L(v_n))$$

■

Injective, Surjective, isomorphisms

Definition Let $L: V \rightarrow W$ be a linear map

- L is **one-to-one** (injective) if $L(\underline{u}_1) = L(\underline{u}_2) \implies \underline{u}_1 = \underline{u}_2$
- L is **onto** (surjective) if $\forall w \in W \ \exists v \in V \text{ s.t } L(v) = w \quad (\text{Im}(L) = W)$
- L is **bijective** if L is both one to one and onto

Lemma

A linear map $L: V \rightarrow W$ between vector spaces over the same field \mathbb{F}

- i) one to one $\iff \text{Ker}(L) = \{0\}$
- ii) Hence L is bijective when $\text{Ker}(L) = \{0\}$ and $W = \text{Im}(L)$
- iii) When L is bijective, it has an inverse

$$L^{-1}: W \rightarrow V$$

which is also a linear map

Proof: of (iii)

Let $\alpha, \beta \in \mathbb{F}$, $w_1, w_2 \in W$. We want to show that

$$L^{-1}(\alpha w_1 + \beta w_2) = \alpha L^{-1}(w_1) + \beta L^{-1}(w_2). \quad (*)$$

Apply L to LHS of $(*)$

$$L(L^{-1}(\alpha w_1 + \beta w_2)) = \alpha w_1 + \beta w_2$$

since L and L^{-1} are inverses and $L \circ L^{-1} = I_W$

Applying L to RHS of $(*)$

$$\begin{aligned} L(\alpha L^{-1}(w_1) + \beta L^{-1}(w_2)) &= \alpha L(L^{-1}(w_1)) + \beta L(L^{-1}(w_2)) \quad \text{since } L \text{ is linear} \\ &= \alpha w_1 + \beta w_2 \quad L \circ L^{-1} = I_W \end{aligned}$$

Therefore, we have shown

$$L(L^{-1}(\alpha w_1 + \beta w_2)) = L(\alpha L^{-1}(w_1) + \beta L^{-1}(w_2))$$

L is bijective $\implies L$ is injective

$$\implies L^{-1}(\alpha w_1 + \beta w_2) = \alpha L^{-1}(w_1) + \beta L^{-1}(w_2)$$

Definition, Isomorphism

An invertible linear map

$$L: V \rightarrow W$$

is called a **vector space isomorphism**.

We say V is **isomorphic** to W denoted $V \cong W$ if such a map exists

Remark: Composition of 2 linear (bijective) maps gives a linear (bijective) map

Composition of a linear map is linear and composition of bijections is a bijection.

Hence

- 1) $U \cong V$ and $V \cong W \Rightarrow U \cong W$
- 2) $V \cong V$ via **identity map**: $I_v: V \rightarrow V$; $I_v(v) = v$
- 3) $V \cong W \Rightarrow W \cong V$ since isomorphisms are invertible

} **Equivalence relation**

Rank-Nullity

Definition, Rank/Nullity

Let L be a linear map.

Rank of L , $\text{rk}(L)$ is the dimension of $\text{Im}(L)$

$$\text{rk}(L) = \dim(\text{Im}(L))$$

Nullity of L , $\text{null}(L)$ is the dimension of $\text{ker}(L)$

$$\text{null}(L) = \dim(\text{ker}(L))$$

Theorem, Rank-Nullity Theorem

Let V, W be finite dimensional vector spaces over same field \mathbb{F}

For a linear map $L: V \rightarrow W$

$$\dim(V) = \text{rk}(L) + \text{null}(L)$$

Example:

Let $V = W = \mathbb{R}_n[x]$ and define

$$L: V \rightarrow V;$$

$$p(x) \mapsto p'(x)$$

for any arbitrary $p(x) \in \mathbb{R}_n[x]$

$$p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \cdots + \alpha_n x^n \quad \text{for some } \alpha_j \in \mathbb{R}$$

Then

$$L(p(x)) = p'(x) = \alpha_1 + 2\alpha_2 x + 3\alpha_3 x^2 + \cdots + n\alpha_n x^{n-1} \in \mathbb{R}_{n-1}[x]$$

$$\Rightarrow \text{Im}(L) = \mathbb{R}_{n-1}[x]$$

But note that every polynomial in $\mathbb{R}_{n-1}[x]$ can be obtained like this

$$\Rightarrow \text{Im}(L) = \mathbb{R}_{n-1}[x]$$

Therefore $\boxed{\text{rank}(L) = \dim(\text{Im}(L)) = n}$

Finding kernel

$$L(p(x)) = p'(x) = 0 \iff p(x) \text{ is a constant polynomial}$$

$$\iff p(x) = \alpha_0 \quad \forall x, \text{ for some } \alpha_0 \in \mathbb{F}$$

$$\iff \text{ker}(L) = \text{sp}(1) = \{\alpha_0 \mid \alpha_0 \in \mathbb{R}\}$$

Therefore $\boxed{\text{null}(L) = \dim(\text{ker } L) = 1}$

By rank-nullity theorem

$$\dim(V) = n+1$$

Constructing matrix, using ordered basis for $V = \mathbb{R}_n[x]$

$$(v_1, v_2, \dots, v_{n+1}) = (1, x, \dots, x^n)$$

Observe that

$$L(v_j) = L(x^{j-1}) = (x^{j-1})' = (j-1)x^{j-2} = (j-1)v_{j-1}$$

We get an $(n+1) \times (n+1)$ matrix wrt to ordered basis

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & n \\ 0 & 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

$\text{rank}(A) = n = n$ linearly independent column vectors.

$$\text{null}(A) = (n+1) - \text{rank } A = 1$$

Corollary

If V and W are vector spaces over the same field and $\dim(V) = \dim(W)$, then

$$V \cong W \quad \text{isomorphic}$$

In particular, every n -dimensional vector space over \mathbb{F} is isomorphic to \mathbb{F}^n

Proof:

Sufficient to find an isomorphism $\psi: V \rightarrow \mathbb{F}^n$ whenever $\dim(V) = n$

$$\text{Then } V \cong \mathbb{F}^n \text{ and } W \cong \mathbb{F}^n \implies V \cong W$$

Take any ordered basis $B = (v_1, \dots, v_n)$ of V and define

$$\boxed{\begin{aligned} \psi_B: V &\rightarrow \mathbb{F}^n \\ \psi_B\left(\sum_{j=1}^n \alpha_j v_j\right) &= \sum_{j=1}^n \alpha_j e_j = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \end{aligned}}$$

Checking ψ_B is linear, check addition and scalar multiplication

Addition:

$$\begin{aligned} \psi_B\left(\sum_{j=1}^n \alpha_j v_j + \sum_{j=1}^n \beta_j v_j\right) &= \psi_B\left(\sum_{j=1}^n (\alpha_j + \beta_j) v_j\right) \\ &= \sum_{j=1}^n (\alpha_j + \beta_j) e_j = \begin{pmatrix} \alpha_1 + \beta_1 \\ \vdots \\ \alpha_n + \beta_n \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} + \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} \end{aligned}$$

$$= \psi_B\left(\sum_{j=1}^n \alpha_j v_j\right) + \psi_B\left(\sum_{j=1}^n \beta_j v_j\right)$$

Scalar Multiplication:

$$\begin{aligned}
 \psi_B \left(r \left(\sum_{j=1}^n \alpha_j v_j \right) \right) &= \psi_B \left(\sum_{j=1}^n (r \alpha_j) v_j \right) = \sum_{j=1}^n (r \alpha_j) e_j \\
 &= \begin{pmatrix} r \alpha_1 \\ \vdots \\ r \alpha_n \end{pmatrix} = r \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \\
 &= r \left(\psi_B \left(\sum_{j=1}^n \alpha_j v_j \right) \right)
 \end{aligned}$$

Calculating Kernel $\ker(\psi_B)$:

$$\begin{aligned}
 \sum_{j=1}^n \alpha_j v_j \in \ker(\psi_B) &\iff \psi_B \left(\sum_{j=1}^n \alpha_j v_j \right) = \underline{0} \\
 &\iff \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \\
 &\iff \alpha_j = 0 \quad \forall j
 \end{aligned}$$

Therefore

$$\ker(\psi_B) = \{\underline{0}\} \implies \text{null}(L) = 0$$

By rank-nullity theorem,

$$\text{rank}(\psi_B) = n \implies \text{Im}(\psi_B) = \mathbb{F}^n$$

since only n dimensional subspace of \mathbb{F}^n is \mathbb{F}^n itself.

Hence by Lemma on pg 18, ψ_B is an isomorphism ■

Given an ordered basis $B = (v_1, \dots, v_n)$, we define co-ordinate map

$$\begin{aligned}
 \psi_B: V &\longrightarrow \mathbb{F}^n \\
 \psi_B(\alpha_1 v_1 + \dots + \alpha_n v_n) &= \sum_{i=1}^n \alpha_i e_i = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}
 \end{aligned}$$

This is an isomorphism, unique for which

$$\psi(v_j) = e_j$$

Conversely vector space isomorphisms matches bases to bases. So given vector space isomorphism

$$\psi: V \longrightarrow \mathbb{F}^n$$

its inverse $\psi^{-1}: V \rightarrow \mathbb{F}^n$ is also an isomorphism and maps standard basis (e_1, \dots, e_n) of \mathbb{F}^n to an ordered basis (v_1, \dots, v_n) of V , $v_j = \psi^{-1}(e_j)$

Lemma

For a finite dimensional vector space V , there is a bijective correspondence between coordinate maps (isomorphism)

$$\psi: V \rightarrow \mathbb{F}^n$$

and ordered basis $B = (v_1, \dots, v_n)$ of V

CHANGE OF BASIS MATRIX

Let V be a vector space over \mathbb{F} of dimension n ; $\dim(V) = n$

Let A and B be 2 ordered basis for V

$$A = (w_1, \dots, w_n)$$

$$B = (v_1, \dots, v_n)$$

Have co-ordinate maps

$$\psi_B: V \rightarrow \mathbb{F}^n$$

$$\psi_A: V \rightarrow \mathbb{F}^n$$

ψ_A is an isomorphism, hence invertible

$$\psi_A^{-1} \circ \psi_B = I_V$$

Hence

$$\psi_B = \underbrace{\psi_B \circ \psi_A^{-1} \circ \psi_A}_{\text{Linear map } \mathbb{F}^n \rightarrow \mathbb{F}^n}$$

So can represent $\psi_B \circ \psi_A^{-1}$ by $n \times n$ matrix called **change of basis matrix**

$\hookrightarrow C_A^B$: from A to B

Notation: Change of basis matrix: **Transition matrix** from A to B

$$C_A^B$$

Writing as a matrix

$$\psi_B = C_A^B \psi_A$$

$$\text{i.e. } \psi_B(v) = C_A^B \psi_A(v)$$

To find matrix, apply $\psi_B \circ \psi_A^{-1}$ to standard basis (e_1, \dots, e_n) of \mathbb{F}^n

$$\begin{aligned} (\psi_B \circ \psi_A^{-1})(e_j) &= \psi_B(\psi_A^{-1}(e_j)) \\ &= \psi_B(w_j) \quad \text{since } \psi_A(w_j) = e_j \end{aligned}$$

\Rightarrow j^{th} column in matrix is given by co-ordinates of w_j from A written in terms of basis of B

Given 2 ordered basis for vector space V

$$A = (w_1, \dots, w_n)$$

$$B = (v_1, \dots, v_n)$$

The change matrix is given by writing each $w_j \in A$ in terms of basis B

$$j^{\text{th}} \text{ column } w_j = c_{1j} v_1 + \dots + c_{nj} v_n \quad \text{for some } c_{1j}, \dots, c_{nj}$$

Then we see that the j -th column of the matrix C_A^B is given by

$$\psi_B(w_j) = c_{1j} e_j + \dots + c_{nj} e_n = \begin{pmatrix} c_{1j} \\ \vdots \\ c_{nj} \end{pmatrix}$$

$$C_A^B = \begin{pmatrix} c_{11} & \dots & c_{n1} \\ \vdots & \ddots & \vdots \\ c_{1n} & \dots & c_{nn} \end{pmatrix}$$

Multiplication by C_A^B converts co-ordinates w.r.t A into co-ordinates w.r.t B

$$\psi_B(v) = C_A^B \psi_A(v) \quad \forall v \in V$$

Lemma

Let ψ_A and ψ_B be 2 co-ordinate maps on a finite dimensional vector space V , corresponding to ordered basis

$$A = (w_1, \dots, w_n)$$

$$B = (v_1, \dots, v_n)$$

Then

$$\psi_B = C_A^B \psi_A$$

where C_A^B is the change of basis matrix defined above, whose columns are co-ordinate basis of A in terms of B

Change of basis matrices possess some natural properties, which are easily proven from the defining equation

$$\psi_B(w_j) = C_A^B e_j$$

Lemma

For 3 bases A, B and C , we have

$$C_A^C = C_B^C C_A^B$$

Since

$$C_A^A = I_n \quad \text{identity matrix}$$

it follows $(C_B^A)^{-1} = C_A^B$

Examples

1) $V = \mathbb{R}_2[x]$

$$B = (1, x, x^2)$$

$$A = (1+x, x, 1+x^2)$$

Check that A is a basis (check linear independence)

$$\alpha(1+x) + \beta x + \gamma(1+x^2) = 0 \quad \text{for some } \alpha, \beta, \gamma \in \mathbb{F}$$

$$\iff (\alpha + \gamma) + (\alpha + \beta)x + \gamma x^2 = 0$$

$$\iff \alpha + \beta = 0, \quad \gamma = 0, \quad \alpha + \gamma = 0$$

$$\iff \alpha = \beta = \gamma = 0$$

$\dim(V) = 3$, 3 linearly independent vectors \Rightarrow forms a basis for V

Co-ordinate map for B

$$\begin{aligned} \psi_B: V &\longrightarrow \mathbb{R}^3 \\ \psi_B(\alpha_0 + \alpha_1 x + \alpha_2 x^2) &= \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{pmatrix} \end{aligned}$$

To work out C_B^A , write elements of B in terms of A

$$1 = 1(1+x) + (-1) \cdot x + 0 \cdot x^2$$

$$x = 0 \cdot (1+x) + 1 \cdot x + 0 \cdot (1+x^2)$$

$$x^2 = (-1)(1+x) + 1 \cdot x + 1 \cdot (1+x^2)$$

$$C_B^A = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

To find C_A^B , either compute inverse of C_B^A or follow same method

Express the vectors in A in terms of B

$$1+x = 1 \cdot 1 + 1 \cdot x + 0 \cdot x^2$$

$$x = 0 \cdot 1 + 1 \cdot x + 0 \cdot x^2$$

$$1+x^2 = 1 \cdot 1 + 0 \cdot x + 1 \cdot x^2$$

Thus

$$C_A^B = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Check that $C_B^A C_A^B = I_3$

$$C_B^A C_A^B = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Since $\psi_A = C_B^A \psi_B$, it follows that the co-ordinate map $\psi_B: V \rightarrow \mathbb{R}^3$ is given by:

Since $\psi_A(v) = C_B^A \psi_B(v)$, we get

$$\psi_A: V \rightarrow \mathbb{R}^3,$$

$$\psi_A(\alpha_0 + \alpha_1 x + \alpha_2 x^2) = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{pmatrix} = \begin{pmatrix} \alpha_0 - \alpha_2 \\ -\alpha_0 + \alpha_1 + \alpha_2 \\ \alpha_2 \end{pmatrix}$$

Multiplication by C_B^A takes co-ordinate vectors written in terms of B to co-ordinate vectors in terms of A .

For a concrete example, let $p(x) = 1 + 2x + 3x^2$

$p(x)$ in terms of B :

$$\psi_B(p(x)) = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Multiplying by C_B^A gives us

$$C_B^A \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}$$

which is co-ordinate vector of $p(x)$ in terms of A since

$$(-2) \cdot (1+x) + 4 \cdot x + 3 \cdot (1+x^2) = -2 - 2x + 4x + 3 + 3x^2 = 1 + 2x + 3x^2 = p(x)$$

We have verified

$$\psi_B^A(p(x)) = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \\ 3 \end{pmatrix} = \psi_A(p(x))$$

2) Let linear map on $V = \mathbb{R}_2[x]$ be

$$L: V \rightarrow V$$

$$p(x) \mapsto p'(x)$$

L represented by matrix w.r.t B be

$$M_B(L) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

Finding matrix w.r.t A

$$L(1+x) = (1+x)' = 1 = 1(1+x) + (-1)(x) + 0(1+x^2)$$

$$L(x) = (x)' = 1 = 1(1+x) + (-1)(x) + 0(1+x^2)$$

$$L(x^2) = (x^2)' = 2x = 0(1+x) + 2(x) + 0(1+x^2)$$

Hence

$$M_A(L) = \begin{pmatrix} 1 & 1 & 0 \\ -1 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

Matrix representing Linear map revisited

$L: V \rightarrow V$ is a linear map and $B = (v_1, \dots, v_n)$ an ordered basis for V ,

Matrix representing L w.r.t basis B is denoted $M_B(L)$

L is uniquely determined by its action on the basis vectors of B , so the j th column of $M_B(L)$ can be computed by applying L to basis vector v_j and writing co-efficients w.r.t B as a column vector.

\Rightarrow matrix obtained by applying L to v_j writing in terms of B and writing co-ordinates as j th column. (i.e. applying ψ_B^{-1})

$$M_B(L): \mathbb{F}^n \rightarrow \mathbb{F}^n$$

Equivalently basis B gives V the co-ordinate map $\psi_B: V \rightarrow \mathbb{F}^n$

so we take v_j , apply ψ_B^{-1} to get v_j , apply L , then apply ψ_B to get co-ordinate vector

$$M_B(L): \mathbb{F}^n \xrightarrow{\psi_B^{-1}} V \xrightarrow{L} V \xrightarrow{\psi_B} \mathbb{F}^n$$

Hence define

$$M_B(L) = \psi_B \circ L \circ \psi_B^{-1}$$

Also use notation $M_B(L)$ to denote matrix representing this map w.r.t standard basis of \mathbb{F}^n

These descriptions are equivalent.

The matrix $M_B(L)$ for a given basis $B = (v_1, \dots, v_n)$ is obtained by applying L to v_j , writing result in terms of B and then writing coordinates obtained as j^{th} column vector.

We can describe this in terms of the co-ordinate map ψ_B

So we take e_j , apply ψ_B^{-1} to get v_j , apply L , then apply ψ_B to get co-ordinate in terms of B .

More concretely, since B is a basis,

$$L(v_j) = A_{1j}v_1 + \dots + A_{nj}v_n \quad \text{for some } A_{ij}, \dots, A_{nj} \in \mathbb{F}$$

Then $M_B(L)$ is the $n \times n$ matrix (A_{ij})

proof: Recall that $M_B(L)e_j$ gives the j^{th} column of $M_B(L)$.

Now

$$\begin{aligned} M_B(L)e_j &= (\psi_B \circ L \circ \psi_B^{-1})(e_j) \\ &= \psi_B(L(\psi_B^{-1}(e_j))) \\ &= \psi_B(L(v_j)) \\ &= \psi_B(A_{1j}v_1 + \dots + A_{nj}v_n) \\ &= A_{1j}\psi_B(v_1) + \dots + A_{nj}\psi_B(v_n) \\ &= A_{1j}e_j + \dots + A_{nj}e_j \end{aligned}$$

Therefore

$$M_B(L) = \begin{pmatrix} A_{11} & \dots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{n1} & \dots & A_{nn} \end{pmatrix}$$

Properties of matrix representing a Linear map

Proposition

Let V be a vector space over field \mathbb{F} , $L_1, L_2: V \rightarrow V$ be 2 linear transformations and B be a basis for V . Then:

(i) \forall scalars $\alpha, \beta \in \mathbb{F}$,

$$M_B(\alpha L_1 + \beta L_2) = \alpha M_B(L_1) + \beta M_B(L_2)$$

(ii) $M_B(L_1 \circ L_2) = M_B(L_1) M_B(L_2)$

In particular,

$$L: V \rightarrow V \text{ is invertible} \implies M_B(L^{-1}) = M_B(L)^{-1}$$

Proof:

(ii) We use $M_B(L) = \psi_B \circ L \circ \psi_B^{-1}$

Hence matrix multiplication corresponds to composition of Linear maps (and we can interpret them as $n \times n$ matrix as a linear map $\mathbb{F}^n \rightarrow \mathbb{F}^n$)

We have

$$\begin{aligned} M_B(L_1) M_B(L_2) &= (\psi_B \circ L_1 \circ \psi_B^{-1}) \circ (\psi_B \circ L_2 \circ \psi_B^{-1}) \\ &= \psi_B \circ L_1 \circ (\psi_B \circ \psi_B^{-1}) \circ L_2 \circ \psi_B^{-1} \quad \text{composition of functions is associative} \\ &= \psi_B \circ L_1 \circ L_2 \circ \psi_B^{-1} \\ &= M_B(L_1 \circ L_2) \end{aligned}$$

When L is invertible, we have

$$L^{-1} \circ L = L \circ L^{-1} = I_V$$

Apply to above to get

$$\left. \begin{aligned} M_B(L^{-1}) M_B(L) &= M_B(L \circ L^{-1}) = M_B(I_V) = I_n \\ M_B(L) M_B(L^{-1}) &= M_B(L \circ L^{-1}) = M_B(I_V) = I_n \end{aligned} \right\} \implies M_B(L^{-1}) = M_B(L)^{-1}$$

(i) $M_B(L): \mathbb{F}^n \rightarrow \mathbb{F}^n$ is a linear map.

We have $M_B(L) = \psi_B \circ L \circ \psi_B^{-1}$

Let \underline{v} be any arbitrary column vector in \mathbb{F}^n , and v be the corresponding vector V w.r.t co-ordinate map ψ_B , i.e. we have $v = \psi_B^{-1}(\underline{v}) \implies \underline{v} = \psi_B(v)$

Then

$$\begin{aligned}
 M_B(\alpha L_1 + \beta L_2) &= (\psi_B \circ (\alpha L_1 + \beta L_2) \circ \psi_B^{-1})(v) \\
 &= (\psi_B \circ (\alpha L_1 + \beta L_2) \circ \psi_B^{-1})(\psi_B(v)) \\
 &= (\psi_B \circ (\alpha L_1 + \beta L_2) \circ \psi_B^{-1} \circ \psi_B)(v) \\
 &= (\psi_B \circ (\alpha L_1 + \beta L_2))(v) \\
 &= \psi_B(\alpha L_1(v) + \beta L_2(v)) \\
 &= \alpha \psi_B(L_1(v)) + \beta \psi_B(L_2(v)) \\
 &= \alpha \psi_B(L_1(\psi_B^{-1}(v))) + \beta \psi_B(L_2(\psi_B^{-1}(v))) \\
 &= \alpha (\psi_B \circ L_1 \circ \psi_B^{-1})(v) + \beta (\psi_B \circ L_2 \circ \psi_B^{-1})(v) \\
 &= \alpha M_B(L_1)(v) + \beta M_B(L_2)(v) \\
 &= \alpha (M_B(L_1) + \beta M_B(L_2))(v)
 \end{aligned}$$

True $\forall v \in \mathbb{F}^n \Rightarrow$ we have an equality of linear maps $\mathbb{F}^n \rightarrow \mathbb{F}^n$

$$M_B(\alpha L_1 + \beta L_2) = \alpha M_B(L_1) + \beta M_B(L_2)$$

■

Theorem,

Let $L: V \rightarrow V$ be a linear transformation, A, B be 2 bases for V . Then

$$M_B(L) = C_A^B M_A(L) (C_A^B)^{-1} = (C_B^A)^{-1} M_A(L) C_B^A$$

In particular, $M_A(L)$ and $M_B(L)$ are similar matrices

proof:

$$\text{We have } M_B(L) = \psi_B \circ L \circ \psi_B^{-1}$$

$$M_A(L) = \psi_A \circ L \circ \psi_A^{-1}$$

$$\text{Also } \psi_B(v) = C_A^B \psi_A(v) \quad \forall v \in V \implies \psi_B = C_A^B \circ \psi_A$$

Hence

$$\begin{aligned}
 M_B(L) &= \psi_B \circ L \circ \psi_B^{-1} \\
 &= (C_A^B \circ \psi_A) \circ L \circ (C_A^B \circ \psi_A)^{-1} \\
 &= C_A^B \underbrace{\psi_A \circ L \circ \psi_A^{-1}}_{M_A(L)} \circ (C_A^B)^{-1}
 \end{aligned}$$

$$\begin{aligned}
 &= C_A^B \circ M_A(L) \circ (C_A^B)^{-1} && \text{Viewed as linear maps } \mathbb{F}^n \rightarrow \mathbb{F}^n \\
 &= C_A^B M_A(L) (C_A^B)^{-1} && \text{Viewed as matrices}
 \end{aligned}$$

Previous Example continued

$$V = \mathbb{R}_2[x]$$

$$\mathcal{B} = (1, x, x^2)$$

$$\mathcal{A} = (1+x, x, 1+x^2)$$

$$C_A^B = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad C_B^A = (C_A^B)^{-1} = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$L: V \rightarrow V$ given by $p(x) \mapsto p'(x)$

$$M_B(L) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$M_A(L) = \begin{pmatrix} 1 & 1 & 0 \\ -1 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

Verifying theorem

$$\begin{aligned}
 &C_A^B M_A(L) (C_A^B)^{-1} \\
 &= \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ -1 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \\
 &= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \\
 &= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} = M_B(L)
 \end{aligned}$$

Remark: If W and V are finite dimensional vector spaces with

$$\mathcal{A} = (w_1, \dots, w_n) \text{ a basis for } W$$

$$\mathcal{B} = (v_1, \dots, v_n) \text{ a basis for } V$$

Then any linear map $L: W \rightarrow V$ can be represented by a matrix

(given by linear map)

$$M_A^B(L) : \mathbb{F}^n \rightarrow \mathbb{F}^n; M_A^B(L) = \psi_B \circ L \circ \psi_A^{-1}$$

If A' is another basis for W

If B' is another basis for V

then we have change of basis formula

$$M_{A'}^{B'}(L) = C_B^{B'} M_A^B(L) C_{A'}^A$$

EIGENVECTORS AND EIGENVALUES

Notation:

$$L: V \rightarrow V \quad (L: V \hookrightarrow V)$$

Definition

A linear map $L: V \hookrightarrow V$

An eigenvector of L is a non-zero vector $\underline{v} \in V$ such that

$$L\underline{v} = \lambda \underline{v} \quad \text{where } \lambda \in \mathbb{F} \text{ scalar}$$

In this case λ is an eigenvalue of L

The same definition applicable to matrices

$$A\underline{v} = \lambda \underline{v}$$

The set of all eigenvalues of L is called the spectrum of L : $\text{Spec } L$

$$\text{Spec } L = \{ \lambda \in \mathbb{F} \mid L - \lambda I_n \text{ is not invertible} \}$$

Indeed

$$L\underline{v} = \lambda \underline{v} \iff (L - \lambda \text{Id}_n)\underline{v} = 0$$

Remark: Similar matrices have same eigenvalues

Example:

Recall $V = \mathbb{R}_2[x]$

$$L: V \rightarrow V, p(x) \mapsto p'(x)$$

$$B = (1, x, x^2)$$

$$M_B(L) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

Upper Triangular \implies eigenvalues are diagonal elements

$$\implies \lambda = 0, a_0 = 3$$

The eigenvectors are $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \implies g_\lambda = 1$

L and $M_B(L)$ have same eigenvalues/eigenvectors

Theorem

Let $L: V \rightarrow V$ be a linear map, V be a finite dimensional vector space over a field \mathbb{F} .

Then for each matrix representation $A = M_B(L)$ of L

v is an eigenvector \iff co-ordinate vector $\underline{v} = \psi_B(v)$ is an eigenvector with eigenvalue λ

Moreover, the characteristic polynomial $\det(\lambda I_n - A)$ depends only on L , not B .
Hence we can define this to be the characteristic polynomial

$$c_L(\lambda) \text{ of } L$$

Proof:

For $B = (v_1, \dots, v_n)$ a basis of V

Recall that $\psi_B: V \rightarrow \mathbb{F}^n$ is the co-ordinate map which is the vector space isomorphism that satisfies

$$\psi_B(v_j) = e_j$$

For $v \in V$, let $\underline{v} = \psi_B(v)$

Recall that viewed as linear maps $\mathbb{F}^n \rightarrow \mathbb{F}^n$, we have

$$M_B(L) = \psi_B \circ L \circ \psi_B^{-1}$$

Let $\lambda \in \mathbb{F}$

Note that applying ψ_B , we have

$$\begin{aligned} \psi_B(L(v)) &= (\psi_B \circ L)(v) \\ &= (\psi_B \circ L \circ \psi_B^{-1} \circ \psi_B)(v) \\ &= (M_B(L) \circ \psi_B)(v) \end{aligned}$$

$$\begin{aligned}
 &= M_B(L)(\psi_B(v)) \\
 &= M_B(L)(\underline{v})
 \end{aligned}$$

and

$$\psi_B(\lambda v) = \lambda \psi_B(v) = \lambda \underline{v}$$

$$\begin{aligned}
 \text{So } L(v) = \lambda v &\iff \psi_B(L(v)) = \psi_B(\lambda v) \quad \text{bijective} \\
 &\iff M_B(L)(\underline{v}) = \lambda \underline{v} \\
 &\iff A(\underline{v}) = \lambda \underline{v}
 \end{aligned}$$

So v is an eigenvector of L with eigenvalue $\lambda \iff \underline{v} = \psi_B(v)$ is an eigenvector of $A = M_B(L)$ with eigenvalue λ

To show $c_A(\lambda)$ does not depend on B , can argue that its roots are eigenvalues of L and only depend on L (and $c_A(\lambda)$ is monic)

Alternative for A another ordered basis of V , we saw that

$M_B(L)$ and $M_A(L)$ are similar matrices

$$(\exists \text{ an invertible matrix } P = C_A^B \text{ s.t. } M_B(L) = P^{-1} M_A(L) P)$$

and we saw that similar matrices have same characteristic polynomial (Lemma 2.17) ■

Diagonalizable Linear maps

Definition

We say a linear map $L: V \rightarrow V$ is **diagonalizable** when V admits a basis B for which the matrix $M_B(L)$ representing it is diagonal.

Recall that $n \times n$ matrix A is diagonalizable if

\exists an invertible matrix P for which $P^{-1}AP$ is diagonal.

This happens when eigenvectors of \mathbb{F}^n form a basis of \mathbb{F}^n

Using isomorphism $\psi_B: V \rightarrow \mathbb{F}^n$,

A linear map $L: V \rightarrow V$ is diagonalizable $\iff V$ admits a basis $B = (v_1, \dots, v_n)$ where v_j is an eigenvector

Example of infinite dimensions

If V not finite dimensional, situation more complicated

i) Let $V = \mathbb{R}[x]$

For $p(x) \in V$, define

$$L(p(x)) = \int_0^x p(t) dt$$

Note that $L(p)$ is a polynomial in x , and integration is linear

No eigenvectors:

$$\text{if } L(p(x)) = \lambda p(x)$$

||

$$\int_0^x p(t) dt$$

Differentiating both sides and using fundamental theorem of calculus

$$p(x) = (\lambda p(x))' = \lambda p'(x)$$

if $\lambda = 0$ then $p(x) = 0 \quad \forall x \in \mathbb{R} \implies p$ is zero polynomial/vector

\implies But 0 vector is NEVER an eigenvector so there is no eigenvector for $\lambda = 0$

if $\lambda \neq 0 \implies p(x) = \lambda p'(x)$

$$\implies \frac{1}{\lambda} = \frac{p'(x)}{p(x)}$$

$$\implies p(x) = \alpha e^{x/\lambda} \text{ for some } \alpha \in \mathbb{R}$$

not a polynomial

Hence $\text{spec } L = \emptyset$

(2) $V = C^\infty([a, b], \mathbb{R})$: vector space of infinitely differentiable functions $f: [a, b] \rightarrow \mathbb{R}$

$$L: V \rightarrow V;$$

$$L(f) = f'$$

is a linear map on V

We have

$$L(e^{\lambda x}) = \lambda e^{\lambda x} \quad \forall \lambda \in \mathbb{R}$$

$\Rightarrow e^{\lambda x}$ is an eigenvector of L for every $\lambda \in \mathbb{R}$

$$\text{spec}(L) = \mathbb{R}$$

(3) Legendre equation

$$(1-x^2)y'' - 2xy' - \lambda y = 0, \quad \lambda \in \mathbb{R}, \quad y \text{ a function of } x$$

Define $L(y) = (1-x^2)y'' - 2xy'$ \Rightarrow by properties of differentiation L is linear

Could view L as a linear map on the space $C^\infty([a, b], \mathbb{R})$

Then Legendre equation becomes

$$L(y) = \lambda y \quad (\text{an eigenvector problem})$$

If y is a polynomial of degree n , then so is $(1-x^2)y''$ and $-2xy$, we restrict L to $\mathbb{R}_n[x]$

$L: \mathbb{R}_n[x] \rightarrow \mathbb{R}_n[x]$ is a linear map

$L(y) = \lambda y$ an eigenvector problem

finite dim

Represent L by an $(n+1) \times (n+1)$ matrix

For example if $n=2$, use $B = (1, x, x^2)$ for $V = \mathbb{R}_2[x]$

$$L(1) = (1-x^2)1' - 2x1 = 0 = 0 \cdot 1 + 0 \cdot x + 0 \cdot x^2$$

$$L(x) = (1-x^2)x'' - 2x x' = -2x = 0 \cdot 1 + (-2) \cdot x + 0 \cdot x^2$$

$$L(x^2) = (1-x^2)(x^2)'' - 2x(x^2)' = (1-x^2)2 - 2x2x = 2 - 6x^2 = 2 \cdot 1 + 0 \cdot x + (-6)x^2$$

So w.r.t B , L is represented by the matrix

$$A = M_B(L) = \begin{pmatrix} 0 & 0 & 2 \\ 0 & -2 & 0 \\ 0 & 0 & -6 \end{pmatrix}$$

Eigenvectors:

$$\lambda_3 = -6:$$

$$\begin{pmatrix} 0 - (-6) & 0 & 0 \\ 0 & -2 - (-6) & 0 \\ 0 & 0 & -6 - (-6) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \implies \begin{cases} 6x_1 + 2x_3 = 0 \\ 4x_2 = 0 \end{cases}$$

$$\implies \begin{cases} x_3 = -3x_1 \\ x_2 = 0 \end{cases}$$

So eigenvector of A , $\lambda_3 = -6$ is $v_3 = \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}$

Similarly for $\lambda_1 = 0$, $v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

$\lambda_2 = -2$, $v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

To get corresponding eigenvectors of L , we apply Ψ_B

$$\Psi_B^{-1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^2 = 1$$

$$\Psi_B^{-1} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 0 \cdot 1 + 1 \cdot x + 0 \cdot x^2 = x$$

$$\Psi_B^{-1} \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix} = 1 \cdot 1 + 0 \cdot x - 3 \cdot x^2 = 1 - 3x^2$$

Get eigenvectors

$$p_1(x) = 1, \quad p_2(x) = x, \quad p_3(x) = 1 - x^2$$

Legendre polynomial

$$\text{customary scaling } p_3(x) = \frac{1}{2} (3x^2 - 1)$$

Matrix A is diagonalizable since has 3 distinct eigenvalues

$\implies L$ is diagonalizable

Can also see since $p_1(x)$, $p_2(x)$, $p_3(x)$ are linearly independent in $\mathbb{R}_2[x]$ so they form a basis of eigenvectors

$$P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{pmatrix} \quad P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -6 \end{pmatrix}$$

For higher n , keep same eigenfunctions and get new ones

e.g for $n=3$, also have eigenvalue $\lambda = -12 \Rightarrow$ eigenvector $v_4 = \begin{pmatrix} 0 \\ -3 \\ 0 \\ 5 \end{pmatrix}$

$$\Rightarrow p_4(x) = -3x + 5x^2 \quad \left(\text{or } \frac{1}{2}(5x^3 - 3x) \text{ rescaled} \right)$$

Legendre polynomials are orthogonal (inner product is 0)

DUAL SPACES

Linear Functional

Definition Linear Functional

For a vector space V over a field \mathbb{F} , a linear functional is a linear map

$$L: V \rightarrow \mathbb{F}$$

i.e. an element of $\text{Hom}(V, \mathbb{F})$

Dual Spaces

Definition Dual Spaces

The space $\text{Hom}(V, \mathbb{F})$ of linear functionals form a vector space over \mathbb{F} called the dual space of V denoted V^*

Example: $V = \mathbb{R}^3$ (column vectors)

$V = \mathbb{R}^3$ (column vectors), then V^* can be viewed as row vectors since these "act" on column vectors by matrix multiplication

Matrix multiplication is linear and outputs in \mathbb{R}

$$(y_1, y_2, y_3) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = y_1 x_1 + y_2 x_2 + y_3 x_3 \in \mathbb{R}$$

Standard basis for $V = \mathbb{R}^3$: $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

Dual basis for V^* is $f_1 = (1 0 0) \quad f_2 = (0 1 0) \quad f_3 = (0 0 1)$

e.g $f_1(e_1) = (1 0 0) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 1 \quad f_1(e_2) = 0$

Isomorphism between V and V^* for finite dimensional V

Proposition

Let V be a finite dimensional vector space, basis $B = (v_1, \dots, v_n)$

Then V^* has a basis given by linear functionals

$$v_j^*: V \rightarrow \mathbb{F}$$

$$v_j^*(v_k) = \delta_{jk} \quad \text{for } j=1, \dots, n$$

Hence $\dim(V) = \dim(V^*)$ and $V \cong V^*$ (isomorphic)

An isomorphism is given by the linear map

$$L: V \rightarrow V^*$$

$$L(v_j) = v_j^* \quad \text{for } j=1, \dots, n$$

proof:

To show v_j^* form a basis, we need to show they span V^* and they are linearly independent

So need to show that every linear functional $f: V \rightarrow \mathbb{F}$ is a linear combination of v_1^*, \dots, v_n^*

Every linear map f is completely determined by action on v_1, \dots, v_n

Define

$$\gamma_j = f(v_j) \quad \text{where } v_j \in V \text{ for } j=1, \dots, n$$

Claim: $f = \sum_{j=1}^n \gamma_j v_j^*$

This is because

$$\left(\sum_{j=1}^n \gamma_j v_j^* \right) (v_k) = \sum_{j=1}^n \gamma_j (v_j^*(v_k)) = \gamma_k = f(v_k)$$

Same action on all basis vectors hence have same map \implies spans V^*

Have seen that each $f: V \rightarrow \mathbb{F}$ in V^* is a linear combination of

$$v_1^*, \dots, v_n^*$$

$$\implies v_1^*, \dots, v_n^* \text{ span } V$$

linearly independent: Assume $\exists \alpha_1, \dots, \alpha_n \in \mathbb{F}$ s.t

$$\sum_{j=1}^n \alpha_j v_j^* = 0$$

0 map $0: V \rightarrow \mathbb{F}$
 $0(v) = 0 \quad \forall v \in V$

$$\text{Then } \left(\sum_{j=1}^n \alpha_j v_j^* \right) (v_k) = 0(v_k) = 0 \implies \sum_{j=1}^n \alpha_j (v_j^*(v_k)) = 0$$

$$\implies \sum_{j=1}^n \alpha_j \delta_{jk} = 0$$

$$\implies \alpha_k = 0 \quad \forall k$$

Hence linearly independent and spans $V \implies$ forms basis

$$\dim(V^*) = n = \dim(V) \quad \text{number of elements in basis}$$

V, V^* vector spaces over same field with same dimension \implies isomorphic $V \cong V^*$ corollary pg 21

If $B = (v_1, \dots, v_n)$ and $B^* = (v_1^*, \dots, v_n^*)$, we have 2 isomorphisms (co-ordinate maps)

$$\psi_B: V \rightarrow \mathbb{F}^n; v_j \mapsto e_j$$

$$\psi_{B^*}: V^* \rightarrow \mathbb{F}^n; v_j^* \mapsto e_j$$

So isomorphism $L: V \rightarrow V^*$ given by

$$L: V \rightarrow V^*$$

$$L: V \xrightarrow{\psi_B} \mathbb{F}^n \xrightarrow{(\psi_{B^*})^{-1}} V^*$$

$$v_j \mapsto e_j \mapsto v_j^*$$

■

Dual of a Linear map

Definition, Dual Map

If $L: V \rightarrow W$ is a linear map, then the **dual map** of L is the linear map

$$L^*: W^* \rightarrow V^*$$

$$L^*(f) = f \circ L \quad \text{for } f \in W^*$$

In the example $V = \mathbb{R}^n$ viewed as column vectors with V^* being interpreted as row vectors and $W = \mathbb{R}^m$

The linear map $L: V \rightarrow W$ can be represented by an $m \times n$ matrix A

The linear map $L: W^* \rightarrow V^*$ is represented by the $n \times m$ matrix transpose A^T

2. Inner Products

Dot Product in \mathbb{R}^n

In \mathbb{R}^n , we can use dot (or scalar) product. If $\underline{u} = \sum_{j=1}^n \alpha_j e_j$ and $\underline{v} = \sum_{j=1}^n \beta_j e_j$

$$\underline{u} \cdot \underline{v} = \underline{u}^T \underline{v} = \sum_{j=1}^n \alpha_j \beta_j$$

The length of \underline{u} is given by $\|\underline{u}\| = \sqrt{\underline{u} \cdot \underline{u}}$ and angle between \underline{u} and \underline{v} given by

$$\cos \theta = \frac{\underline{u} \cdot \underline{v}}{\|\underline{u}\| \|\underline{v}\|}$$

Properties of \mathbb{R}^n

- 1) $\underline{u} \cdot \underline{v} = \underline{v} \cdot \underline{u}$
- 2) $(\alpha \underline{u} + \beta \underline{v}) \cdot \underline{w} = \alpha (\underline{u} \cdot \underline{w}) + \beta (\underline{v} \cdot \underline{w})$
- 3) $\|\underline{u}\| \geq 0$
- 4) $\|\underline{u}\| = 0 \iff \underline{u} = 0$

Hermitian/Complex inner product on \mathbb{C}^n

In \mathbb{C}^n , usual dot product $\sqrt{\underline{u} \cdot \underline{v}}$ is not useful, since

$$\sqrt{\underline{u} \cdot \underline{v}} \in \mathbb{C} \not\subset \mathbb{R}$$

For example

$$\underline{u} = \begin{pmatrix} i \\ 0 \\ 0 \end{pmatrix}, \quad \underline{v} = \begin{pmatrix} i \\ 1 \\ 0 \end{pmatrix}$$

$$\sqrt{\underline{u} \cdot \underline{u}} = \sqrt{i \cdot i + 0 + 0} = i$$

$$\sqrt{\underline{v} \cdot \underline{v}} = \sqrt{i \cdot i + 1 + 0} = 0 \quad \text{but } \underline{v} \neq 0 \quad \text{not like length}$$

So we use complex conjugate $|z| = \sqrt{z \bar{z}}$ (non-negative)

Define Hermitian (or complex) inner product

$$\langle \underline{u}, \underline{v} \rangle = \underline{u}^T \underline{v} = \sum_{j=1}^n \bar{\alpha}_j \beta_j$$

REAL INNER PRODUCT SPACES

Inner Product

Definition Inner Product

Let V be a vector space. An inner product on V is a function

$$\langle \cdot, \cdot \rangle : V \times V \rightarrow \mathbb{R}$$

such that $\forall u, v, w \in V$ and $\forall \alpha \in \mathbb{R}$

i) $\langle u, v \rangle = \langle v, u \rangle$ symmetry

ii) $\langle u+v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ linear in first variable

iii) $\langle \alpha u, v \rangle = \alpha \langle u, v \rangle$

positive definite

iv) $\langle u, u \rangle \geq 0$

v) $\langle u, u \rangle = 0 \iff u = 0$

Vector space over \mathbb{R} an inner product is also called a **real inner product space** (also called Euclidean space)

Examples of Inner Product Spaces

i) $\forall n \in \mathbb{N}$, \mathbb{R}^n with usual dot product is an inner product

$$\left\langle \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \right\rangle = (x_1, x_2, \dots, x_n) \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

Remark: Note that (ii) and (iii) imply that in any inner product space, for $u, v, w \in V$, $\alpha, \beta \in \mathbb{R}$

$$\langle \alpha u + \beta v, w \rangle = \alpha \langle u, w \rangle + \beta \langle v, w \rangle$$

Combined with symmetry (i), we get

$$\begin{aligned} \langle u, \alpha v + \beta w \rangle &= \langle \alpha v + \beta w, u \rangle = \alpha \langle v, u \rangle + \beta \langle w, u \rangle \\ &= \alpha \langle u, v \rangle + \beta \langle u, w \rangle \end{aligned}$$

$\implies \langle \cdot, \cdot \rangle$ linear in both variables, i.e. **bilinear**

2) $V = C([0, 1], \mathbb{R})$: Space of continuous real valued functions on $[0, 1]$

Define inner product

$$\langle f, g \rangle = \int_0^1 f(t)g(t) dt$$

We know continuous functions are integrable and product of continuous functions is continuous.

\Rightarrow outputs a real number $\forall f, g \in V$

$\Rightarrow \langle \cdot, \cdot \rangle$ a function from $V \times V \rightarrow \mathbb{R}$

Let $f, g, h \in V$ and $\alpha \in \mathbb{R}$

Symmetry:

$$\langle f, g \rangle = \int_0^1 f(t)g(t) dt = \int_0^1 g(t)f(t) dt = \langle g, f \rangle$$

Linearity: In first variable

$$\begin{aligned} \langle f+g, h \rangle &= \int_0^1 (f+g)(t)h(t) dt \\ &= \int_0^1 (f(t)+g(t))h(t) dt \\ &= \int_0^1 (f(t)h(t) + g(t)h(t)) dt \\ &= \int_0^1 f(t)h(t) dt + \int_0^1 g(t)h(t) dt = \langle f, h \rangle + \langle g, h \rangle \end{aligned}$$

$$\langle \alpha f, g \rangle = \int_0^1 (\alpha f)(t) dt = \int_0^1 \alpha f(t)g(t) dt = \alpha \int_0^1 f(t)g(t) dt = \alpha \langle f, g \rangle$$

Positive definite:

$$\langle f, f \rangle = \int_0^1 (f(t))^2 dt \geq 0 \quad \text{since } (f(t))^2 \geq 0 \quad \forall t \in [0, 1]$$

$$\text{If } \langle f, f \rangle = \int_0^1 (f(t))^2 dt = 0 \iff f(t) = 0 \quad \forall t \in [0, 1] \quad \text{since } (f(t))^2 \geq 0$$

Remark: proof did not rely on $[0,1]$, define inner product on $C([a,b], \mathbb{R})$ by

$$\langle f, g \rangle = \int_a^b f(t)g(t) dt \quad a < b$$

3) $V = \mathbb{R}^2$, product given by

$$\left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = 3x_1y_1 + 2x_2y_2$$

$$\text{Symmetry: } \left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = 3x_1y_1 + 2x_2y_2$$

$$= 3y_1x_1 + 2y_2x_2 = \left\langle \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \right\rangle$$

$$\begin{aligned} \text{Linear in first variable: } \left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \right\rangle &= 3(x_1+y_1)z_1 + 2(x_2+y_2)z_2 \\ &= 3x_1z_1 + 2x_2z_2 + 3y_1z_1 + 2y_2z_2 \\ &= \left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \right\rangle + \left\langle \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \right\rangle \end{aligned}$$

$$\begin{aligned} \left\langle \alpha \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle &= \left\langle \begin{pmatrix} \alpha x_1 \\ \alpha x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = 3(\alpha x_1)y_1 + 2(\alpha x_2)y_2 \\ &= \alpha(3x_1y_1 + 2x_2y_2) \\ &= \alpha(3x_1y_1 + 2x_2y_2) \end{aligned}$$

$$\text{Positive definite: } \left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \right\rangle = 3x_1^2 + 2x_2^2 \geq 0 \quad \text{as } x^2 \geq 0 \quad \forall x \in \mathbb{R}$$

$$\left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \right\rangle = 0 \iff \begin{matrix} 3x_1^2 + 2x_2^2 = 0 \\ \geq 0 \quad \geq 0 \end{matrix} \iff x_1 = 0; x_2 = 0$$

Norm of a vector

Definition Norm

In an inner product space V , the **norm** (or length) of a vector v is

$$\|v\| = \sqrt{\langle v, v \rangle}$$

where non-negative square root is taken.

Remark: The norm is a map $\|\cdot\|: V \rightarrow \mathbb{R}$ but is **NOT** a linear map

$$\begin{aligned} \text{For } \alpha \in \mathbb{R}, v \in V, \quad \|\alpha v\| &= \sqrt{\langle \alpha v, \alpha v \rangle} = \sqrt{\alpha^2 \langle v, v \rangle} \\ &= |\alpha| \|v\|, \text{ not } \alpha \|v\| \end{aligned}$$

Unit Vectors

Definition Unit Vector

If a vector $v \in V$ has norm 1

$$\|v\| = 1$$

then v is called a **unit vector**

If $v \neq 0$ is any non-zero vector, vector

$$\frac{v}{\|v\|}$$

has norm 1 $\Rightarrow \frac{v}{\|v\|}$ is a **unit vector**

Examples of Norms

1) In $C([0,1], \mathbb{R})$ with inner product

$$\langle f, g \rangle = \int_0^1 f(t)g(t) dt$$

vector $f(x) = x$ has norm $\|f\| = \sqrt{\langle f, f \rangle}$

$$\begin{aligned} \langle f, f \rangle &= \int_0^1 f(t)f(t) dt = \int_0^1 t^2 dt = \left[\frac{t^3}{3} \right]_{t=0}^{t=1} = \frac{1}{3} \end{aligned}$$

$$\implies \|f\| = \frac{1}{\sqrt{3}}$$

Hence $\frac{f(x)}{\|f(x)\|} = \sqrt{3}x$ is a unit vector

2) $V = \mathbb{R}^2$ with inner product

$$\left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = 3x_1y_1 + 2x_2y_2$$

Vector $v = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ has norm

$$\|v\| = \sqrt{3 \cdot 0 \cdot 0 + 2 \cdot 1 \cdot 1} = \sqrt{2}$$

$$\frac{v}{\|v\|} = \frac{v}{\sqrt{2}} = \begin{pmatrix} 0 \\ 1/\sqrt{2} \end{pmatrix} \text{ a unit vector}$$

BILINEAR FORMS

Definition Bilinear Forms

Let V, W, U be 3 vector spaces over same field \mathbb{F} . A map

$$f: V \times W \rightarrow U$$

is said to be a **bilinear map** if it is linear in each of its arguments.

In the special case where $V = W = U = \mathbb{F}$, a bilinear map

$$f: V \times V \rightarrow \mathbb{F}$$

is called a **bilinear form**.

In detail, a bilinear map $f: V \times V \rightarrow \mathbb{F}$ that satisfies $\forall u, v, w \in V, \alpha \in \mathbb{F}$

$$\text{i) } \langle u+w, v \rangle = \langle u, v \rangle + \langle w, v \rangle$$

$$\text{ii) } \langle \alpha u, v \rangle = \alpha \langle u, v \rangle$$

$$\text{iii) } \langle u, v+w \rangle = \langle u, v \rangle + \langle u, w \rangle$$

$$\text{iv) } \langle u, \alpha v \rangle = \alpha \langle u, v \rangle$$

Examples of Bilinear Forms

1) $V = \mathbb{R}^2$, a bilinear form that is not an inner product is given by

$$f: V \times V \rightarrow \mathbb{R}$$

$$f\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}\right) = 3x_1y_1 + x_1y_2 + 2x_2y_2$$

map bilinear, but not symmetric \implies not an inner product

2) $V = \mathbb{R}^2$

$$g: V \times V \rightarrow \mathbb{R}$$

$$g\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}\right) = 3x_1y_1 + 2x_2y_2$$

This is bilinear, symmetric, not positive definite

Matrix representing a bilinear form on \mathbb{R}^n

Proposition

A map $f: \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$ is a bilinear form

$\exists A \in M_{n \times n}(\mathbb{R})$ such that

$$f(u, v) = u^T A v \quad \forall u, v \in \mathbb{R}^n$$

The entries A_{jk} of the matrix are given by

$$A_{jk} = f(\underline{e}_j, \underline{e}_k)$$

The matrix A is known as the **matrix representing the bilinear form of f**

Examples of matrix representing bilinear form

1) $V = \mathbb{R}^2$

Using $A_{jk} = f(\underline{e}_j, \underline{e}_k)$, the dot product represented by I_2 since

$$A_{11} = f(\underline{e}_1, \underline{e}_2) = \underline{e}_1 \cdot \underline{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1^2 + 0^2 = 1$$

$$A_{21} = f(\underline{e}_2, \underline{e}_1) = \underline{e}_2 \cdot \underline{e}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0$$

$$2) V = \mathbb{R}^2$$

Using bilinear form $f: V \times V \rightarrow \mathbb{R}$

$$f\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}\right) = 3x_1y_1 + x_1y_2 + 2x_2y_2$$

$$A_{11} = f(\underline{e}_1, \underline{e}_1) = f\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}\right) = 3 \cdot 1 \cdot 1 + 1 \cdot 0 + 0 \cdot 0 = 3$$

$$A_{12} = f(\underline{e}_1, \underline{e}_2) = f\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}\right) = 3 \cdot 1 \cdot 0 + 1 \cdot 1 + 1 \cdot 0 = 1$$

$$A_{21} = f(\underline{e}_2, \underline{e}_1) = f\left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}\right) = 3 \cdot 1 \cdot 0 + 0 \cdot 0 + 2 \cdot 1 \cdot 0 = 0$$

$$A_{22} = f(\underline{e}_2, \underline{e}_2) = f\left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}\right) = 3 \cdot 0 \cdot 0 + 1 \cdot 0 + 2 \cdot 1 \cdot 1 = 2$$

Matrix representing A is

$$A = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix} \quad \text{co-efficients}$$

2) Similarly for the bilinear form

$$g: V \times V \rightarrow \mathbb{R}$$

$$g\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}\right) = -3x_1y_1 + 2x_2y_2$$

$$B = \begin{pmatrix} -3 & 0 \\ 0 & 2 \end{pmatrix} \quad \text{co-efficients}$$

Symmetric positive definite matrices

Definition Symmetric matrices

For any $n \times n$ matrix $A \in \text{Mat}(n, \mathbb{F})$, A is **symmetric** if

$$A^T = A \quad \text{or} \quad A_{ij} = A_{ji}$$

Definition Positive Definite

A real symmetric $n \times n$ matrix is said to be **positive definite** if

$$v^T A v \geq 0 \quad \forall \text{ column vectors } v \in \mathbb{R}^n$$

$$v^T A v = 0 \iff v = 0$$

Leading Principle Major

Definition, Leading Principal Minor

For any $n \times n$ matrix, a **leading principal minor** of A is the determinant of the submatrix formed by taking the top left $k \times k$ submatrix of A for any $1 \leq k \leq n$

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

Lemma

Let A be a real symmetric $n \times n$ matrix. Then the following are equivalent

- A is positive definite
- All eigenvalues are positive
- All the leading principal minors are positive (Sylvester's Criterion)

Proposition

A bilinear form $\langle \cdot, \cdot \rangle$ on $\mathbb{R}^n \times \mathbb{R}^n$ is a real inner product

matrix representing $\langle \cdot, \cdot \rangle$ is a real symmetric positive definite matrix

Examples

1) $V = \mathbb{R}^2$

The matrix representing dot product

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

I_2 is real, symmetric, positive eigenvalues \Rightarrow positive definite

2) $V = \mathbb{R}^2$

Using bilinear form $f: V \times V \rightarrow \mathbb{R}$

$$f\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}\right) = 3x_1y_1 + x_1y_2 + 2x_2y_2$$

Represented by matrix $A = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$

Since

$$\begin{aligned} f\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}\right) &= (x_1 \ x_2) \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \\ &= (x_1 \ x_2) \begin{pmatrix} 3y_1 + y_2 \\ 2y_2 \end{pmatrix} \\ &= x_1(3y_1 + y_2) + x_2 2y_2 \\ &= 3x_1y_1 + x_1y_2 + 2x_2y_2 \end{aligned}$$

Note: Can instantly see matrix from co-efficients

A_{ij} = coefficient of $x_i y_j$

A not symmetric \Rightarrow form not symmetric

\Rightarrow not an inner product

Also saw $B = \begin{pmatrix} -3 & 0 \\ 0 & 2 \end{pmatrix}$ non-positive eigenvalues

\Rightarrow not positive definite

$$3) V = \mathbb{R}^3$$

$h: V \times V \rightarrow \mathbb{R}^3$ given by

$$h\left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}\right) = 2x_1y_1 + x_2y_2 - 2x_2y_3 - 2x_3y_2 + Ky_3y_3, \quad K \in \mathbb{R}$$

This is a bilinear form on \mathbb{R}^3 since we can represent by matrix

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & -2 & K \end{pmatrix} \text{ real, symmetric}$$

Positive definite: using (iii) Sylvester's criterion

Calculating determinants of

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & -2 & K \end{pmatrix}$$

$$(1) |2| = 2 > 0$$

$$(2) \begin{vmatrix} 2 & 0 \\ 0 & 1 \end{vmatrix} = 2 > 0$$

$$(3) \begin{vmatrix} 2 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & -2 & K \end{vmatrix} = 2 \begin{vmatrix} 1 & -2 \\ -2 & K \end{vmatrix} = 2(K-4)$$

$$2(K-4) \geq 0 \iff K-4 \geq 0 \iff K \geq 4$$

Matrix positive definite $\iff K \geq 4$

Therefore h is an inner product iff $K \geq 4$

Matrix Form of a bilinear map on real vector space V

Generalise result to any finite dimensional vector space over \mathbb{R}

Theorem

Let V be a finite dimensional vector space over \mathbb{R} , let $B = \{v_1, \dots, v_n\}$ be any basis for V .

For $u, v \in V$, let $\underline{u} = \psi_B(u)$ and $\underline{v} = \psi_B(v)$ (so \underline{u} and \underline{v} are co-ordinate column vectors of u and v with respect to B)

A map $\langle \cdot, \cdot \rangle: V \times V \rightarrow \mathbb{R}$ is a bilinear form $\iff \exists$ a matrix $A \in M_{n \times n}(\mathbb{R})$ such that

$$\langle u, v \rangle = \underline{u}^T A \underline{v} \quad \forall u, v \in V$$

The entries of A_{jk} of the matrix is given by

$$A_{jk} = \langle v_j, v_k \rangle$$

A is called **matrix representing the bilinear form** $\langle \cdot, \cdot \rangle$ w.r.t basis B

The bilinear form $\langle \cdot, \cdot \rangle$ is a real inner product on $V \iff A$ is real, symmetric positive definite matrix

Example

We saw $\langle f, g \rangle = \int_0^1 f(t) g(t) dt$ is an inner product on infinite dimension vector space $C([0,1], \mathbb{R})$

Let $V = \mathbb{R}[x]$. Then $V \subseteq C([0,1], \mathbb{R})$

\implies So this is an inner product on V as well.

Matrix w.r.t $B = (1, x)$ standard basis:

$$A_{11} = \langle v_1, v_1 \rangle = \langle 1, 1 \rangle = \int_0^1 1^2 dt = [x]_0^1 = 1$$

$$A_{12} = \langle v_1, v_2 \rangle = \langle 1, x \rangle = \int_0^1 1 \cdot t dt = \frac{1}{2}$$

$A_{12} = A_{21}$ is inner product is symmetric

$$A_{22} = \langle v_2, v_2 \rangle = \langle x, x \rangle = \int_0^1 t \cdot t dt = \frac{1}{3}$$

We get matrix

$$A = \begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{pmatrix}$$

Check this is positive definite using (iii) using Sylvester's Critereon

$$\begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{pmatrix}$$

$$(1) |1| = 1$$

$$(2) \begin{vmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{vmatrix} = \frac{1}{12} > 0$$

Check matrix represents $\langle \cdot, \cdot \rangle$:

A polynomial in $\mathbb{R}[x]$ has form,

$$\alpha_0 + \alpha_1 x, \alpha_0, \alpha_1 \in \mathbb{R}$$

$$\psi_B(\alpha_0 + \alpha_1 x) = \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix}$$

$$\begin{aligned} \langle f, f \rangle &= \langle \alpha_0 + \alpha_1 x, \alpha_0 + \alpha_1 x \rangle = \int_0^1 (\alpha_0 + \alpha_1 t)^2 dt \\ &= \int_0^1 (\alpha_0^2 + 2\alpha_0 \alpha_1 t + \alpha_1^2 t^2) dt \end{aligned}$$

$$\begin{aligned} &= \left[\alpha_0^2 t + \alpha_0 \alpha_1 t + \frac{\alpha_1^2 t^3}{3} \right]_0^1 \\ &= \alpha_0^2 + \alpha_0 \alpha_1 + \frac{1}{3} \alpha_1^2 \end{aligned}$$

$$(\alpha_0 \alpha_1) \begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} = (\alpha_0 \alpha_1) \begin{pmatrix} \alpha_0 + \frac{1}{2} \alpha_1 \\ \frac{1}{2} \alpha_0 + \frac{1}{3} \alpha_1 \end{pmatrix}$$

$$= \alpha_0^2 + \alpha_0 \alpha_1 + \frac{1}{3} \alpha_1^2$$

Matrices Representing the same bilinear form

How are matrices representing the same bilinear form with respect to different bases related?

Proposition

Let V be a finite dimensional vector space over \mathbb{R} and let $f: V \times V \rightarrow \mathbb{R}$ be a bilinear form.

Let A and B be 2 bases for V . Let B be the matrix representing f w.r.t B and A be the matrix representing f w.r.t A .

Then \exists an invertible matrix P such that

$$B = P^T A P$$

In fact, we have $P = C_B^A$, the change of basis from B to A

Proof:

$$\text{If } \underline{u}_B = \psi_B(u) \quad \underline{v}_B = \psi_B(v)$$

$$\underline{u}_A = \psi_A(u) \quad \underline{v}_A = \psi_A(v)$$

Then

$$\underline{u}_A = \psi_A(u) = \underbrace{(\psi_A \circ \psi_B^{-1} \circ \psi_B)}_{C_B^A}(u)$$

$$= C_B^A \psi_B(u)$$

$$= C_B^A \underline{u}_B$$

Hence

$$\langle u, v \rangle = \underline{u}_A^T A \underline{v}_A = (C_B^A \underline{u}_B)^T A (C_B^A \underline{v}_B)$$

$$= \underline{u}_B^T (C_B^A)^T A C_B^A \underline{v}_B$$

$\underbrace{_{B}}$

Definition Congruent Matrices

Matrices A and B that satisfy the condition

$$B = P^T A P$$

for some invertible matrix P are called **congruent matrices**

Important!!!

Show that if A, B congruent then

- i) A symmetric $\Leftrightarrow B$ symmetric
- ii) A positive definite $\Leftrightarrow B$ positive definite

Congruence is a equivalence relation on matrices

COMPLEX INNER PRODUCT SPACES

Definition Complex inner product spaces

Let V be a vector space over \mathbb{C} . A Hermitian inner product on V is a function

$$\langle \cdot, \cdot \rangle : V \times V \rightarrow \mathbb{C}$$

such that $\forall u, v, w \in V$ and $\alpha \in \mathbb{C}$,

i) $\langle u, v \rangle = \overline{\langle v, u \rangle}$

Hermitian (conjugate) symmetry

ii) $\langle u, v+w \rangle = \langle u, v \rangle + \langle u, w \rangle$

linearity in second argument

iii) $\langle u, \alpha v \rangle = \alpha \langle u, v \rangle \quad \forall \alpha \in \mathbb{C}$

iv) $\langle u, u \rangle \geq 0$ (in particular $\langle u, u \rangle \in \mathbb{R}_{\geq 0}$) positive definiteness

v) $\langle u, u \rangle = 0 \iff u = 0$

Recall:

1) Complex conjugate

For any $z \in \mathbb{C}$, $\bar{z} = x + iy$

$\bar{z} = x - iy$ - complex conjugate

2) $\overline{z_1 + z_2} = \bar{z}_1 + \bar{z}_2$

3) $\overline{z_1 z_2} = \bar{z}_1 \bar{z}_2$

Recall: For $\langle \cdot, \cdot \rangle : V \times V \rightarrow \mathbb{C}$, a Hermitian inner product

$u, v, w \in V, \alpha \in \mathbb{C}$

1) $\langle u+v, w \rangle = \overline{\langle w, u+v \rangle}$ by (i)
 $= \overline{\langle w, u \rangle + \langle w, v \rangle}$ by (ii)
 $= \overline{\langle w, u \rangle} + \overline{\langle w, v \rangle}$ since $\overline{z_1 + z_2} = \bar{z}_1 + \bar{z}_2$
 $= \langle u, w \rangle + \langle v, w \rangle$

2) $\langle \alpha u, v \rangle = \overline{\langle v, \alpha u \rangle}$ by (i)
 $= \overline{\alpha \langle v, u \rangle}$ by (ii)
 $= \bar{\alpha} \overline{\langle v, u \rangle}$ since $\overline{z_1 z_2} = \bar{z}_1 \bar{z}_2$

$$= \bar{\alpha} \langle u, v \rangle \text{ by (i)}$$

Norm in a complex inner product

Definition Norm

Let V be a complex vector space

The **norm** (or length) is a function

$$\|\cdot\|: V \rightarrow \mathbb{R}_{>0}$$

$$\|v\| = \sqrt{\langle v, v \rangle}$$

Vectors of norm 1 are called **unit vectors**

Note: Norm is **NOT** linear

$$\|\alpha v\| = |\alpha| \|v\|$$

Hermitian inner product using matrices

Definition Conjugate Transpose

For any $p \times n$ matrix $A = (A_{jk})$, we define its **conjugate transpose** to be

$$A^T = (\bar{A})^T$$

i.e.

$$A^T = (\bar{A}_{kj})$$

Definition Hermitian

We say a square matrix A is **Hermitian** when

$$A^T = A$$

and positive definite when $u^T A u > 0$ for all u

Theorem

Let V be a complex finite dimensional vector space, let $B = (v_1, \dots, v_n)$ be a basis for V .

An operation $\langle \cdot, \cdot \rangle$ on $V \times V$ is an Hermitian inner product

\exists a Hermitian positive definite matrix $A \in M_{n \times n}(\mathbb{C})$ for which

$$\langle u, v \rangle = \underline{u}^T A \underline{v}$$

$\forall u, v \in V$, where $\underline{u} = \underline{\psi}_B(u)$ and $\underline{v} = \underline{\psi}_B(v)$ are the corresponding co-ordinate (column) vectors in \mathbb{C}^n

The A_{jk} of entries of A are given by

$$A_{jk} = \langle v_j, v_k \rangle$$

Note: A is real $\iff A^T = A^*$

Symmetric matrices are Hermitian, **not** vice versa

Examples of inner products

1) $V = \mathbb{C}$, $\langle z, w \rangle = \bar{z}w$

Note that $\langle z, z \rangle = \bar{z}z = |z|^2 \in \mathbb{R}_{\geq 0}$

2) Standard Inner Product on \mathbb{C}^n :

$$V = \mathbb{C}^n:$$

$$\left\langle \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \right\rangle = \bar{x}_1 y_1 + \dots + \bar{x}_n y_n = \sum_{i=1}^n \bar{x}_i y_i$$

Checking axioms:

$$\begin{aligned} (i) \left\langle \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \right\rangle &= \bar{y}_1 x_1 + \dots + \bar{y}_n x_n \\ &= x_1 \bar{y}_1 + \dots + x_n \bar{y}_n \\ &= \overline{\bar{x}_1 y_1 + \dots + \bar{x}_n y_n} \\ &= \left\langle \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \right\rangle \end{aligned}$$

(ii) (iii) same as \mathbb{R}^n

(iv) $\left(\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \right) = \bar{x}_1 x_1 + \dots + \bar{x}_n x_n$
 $= |x_1|^2 + \dots + |x_n|^2 \in \mathbb{R}_{\geq 0}$

and $|x_1|^2 + \dots + |x_n|^2 = 0 \iff x_1 = 0, \dots, x_n = 0$

Matrix representing $\langle \cdot, \cdot \rangle = I_n$

$$\langle u, v \rangle = \underline{u}^T I_n \underline{v} = \underline{u}^T \underline{v}$$

3) The space of continuous functions $C([0, 1], \mathbb{C})$

$$f: [0, 1] \rightarrow \mathbb{C} \quad ([0, 1] \subseteq \mathbb{R})$$

with inner product given by $\langle f, g \rangle = \int_0^1 \overline{f(t)} g(t) dt$

4) $V = \mathbb{C}^2$ with inner product

$$\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right) = 3\bar{x}_1 y_1 + 2\bar{x}_2 y_2$$

Matrix representing $\langle \cdot, \cdot \rangle$: by looking coefficients

$$\begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$$

Theorem

All eigenvalues of a Hermitian matrix are real.

Proof:

$$\begin{aligned} A\vec{v} = \lambda\vec{v} &\implies (A\vec{v})^+ = (\lambda\vec{v})^+ \\ &\implies \vec{v}^+ A^+ = \bar{\lambda} \vec{v}^+ \\ &\implies \vec{v}^+ A^+ \vec{v} = \bar{\lambda} \vec{v}^+ \vec{v} \quad \text{multiply both sides by } \vec{v} \\ &\implies \vec{v}^+ A \vec{v} = \bar{\lambda} \vec{v}^+ \vec{v} \quad A^+ = A \\ &\implies \vec{v}^+ \lambda \vec{v} = \bar{\lambda} \vec{v}^+ \vec{v} \\ &\implies \lambda \vec{v}^+ \vec{v} = \bar{\lambda} \vec{v}^+ \vec{v} \end{aligned}$$

$$\vec{v}^+ \vec{v} \neq 0 \text{ since } \vec{v} \neq 0 \implies \lambda = \bar{\lambda} \implies \lambda \in \mathbb{R}$$

■

5) Consider

$$A = \begin{pmatrix} 2 & i \\ -i & 2 \end{pmatrix}$$

$$A^T = \bar{A}^T = \begin{pmatrix} 2 & \bar{i} \\ -\bar{i} & 2 \end{pmatrix}^T = \begin{pmatrix} 2 & -i \\ i & 2 \end{pmatrix}^T = \begin{pmatrix} 2 & i \\ -i & 2 \end{pmatrix} = A$$

$\Rightarrow A$ Hermitian

In fact lemma on pg 49 still applies in Complex case

Using (iii) Sylvester's Criterion

$$\begin{pmatrix} 2 & i \\ -i & 2 \end{pmatrix}$$

$$(1) |2| = 2 > 0$$

$$(2) \left| \begin{matrix} 2 & i \\ -i & 2 \end{matrix} \right| = 2^2 + i^2 = 1 > 0$$

So matrix positive definite

$\Rightarrow \langle u, v \rangle = \underline{u}^T A \underline{v}$ defines inner product

$$\left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = (\bar{x}_1, \bar{x}_2) \begin{pmatrix} 2 & i \\ -i & 2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

$$= 2\bar{x}_1 y_1 + i\bar{x}_1 y_2 - i\bar{x}_2 y_1 + 2\bar{x}_2 y_2$$

CAUCHY-SCHWARTZ INEQUALITIES AND METRIC SPACES

Let V be any inner product space (real or complex)

Theorem Cauchy-Schwartz inequality

If u and v are any vectors in an inner product space V , then

$$|\langle u, v \rangle| \leq \|u\| \|v\|$$

Proof:

Let V be any real inner product space.

For any $w \in V$, $\langle w, w \rangle \geq 0$

Let $w = \alpha u + \beta v$ where $\alpha = -\langle u, v \rangle$, $\beta = \langle u, u \rangle$

Then $\beta \geq 0$ and

$$\begin{aligned}\langle \alpha u + \beta v, \alpha u + \beta v \rangle &= \langle \alpha u, \alpha u \rangle + \langle \alpha u, \beta v \rangle + \langle \beta v, \alpha u \rangle + \langle \beta v, \beta v \rangle \\ &= \alpha^2 \langle u, u \rangle + \alpha \beta \langle u, v \rangle + \beta \alpha \langle v, u \rangle + \beta^2 \langle v, v \rangle \\ &= \alpha^2 \beta - \alpha^2 \beta - \alpha^2 \beta + \beta^2 \langle v, v \rangle \\ &= \beta (\langle u, u \rangle \langle v, v \rangle - \langle u, v \rangle^2)\end{aligned}$$

If $\beta = 0 \iff u = 0$, then Cauchy-Schwartz inequality trivial.

Otherwise $\beta > 0 \implies \beta (\langle u, u \rangle \langle v, v \rangle - \langle u, v \rangle^2) \geq 0$

$$\implies \langle u, u \rangle \langle v, v \rangle \geq \langle u, v \rangle^2$$

$$\implies \langle u, v \rangle \leq \sqrt{\langle u, u \rangle} \sqrt{\langle v, v \rangle} \quad (\text{non-negative square roots})$$

$$\implies \langle u, v \rangle \leq \|u\| \|v\|$$

Let V be a complex inner product space. For any $w \in V$ and

$$\langle w, w \rangle \geq 0$$

Let $w = \alpha u + \beta v$ where $\alpha = -\langle u, v \rangle$ and $\beta = \langle u, u \rangle$, $\beta \in \mathbb{R}$, $\beta \geq 0$. Then

$$\begin{aligned}\langle \alpha u + \beta v, \alpha u + \beta v \rangle &= \alpha \bar{\alpha} \langle u, u \rangle + \bar{\alpha} \beta \langle u, v \rangle + \bar{\beta} \alpha \langle v, u \rangle + \bar{\beta} \beta \langle v, v \rangle \\ &= \alpha \bar{\alpha} \langle u, u \rangle + \bar{\alpha} \beta \langle u, v \rangle + \beta \alpha \langle v, u \rangle + \beta^2 \langle v, v \rangle \\ &= \alpha \bar{\alpha} \langle u, u \rangle + \bar{\alpha} \beta \langle u, v \rangle + \beta \alpha \langle v, u \rangle + \beta^2 \langle v, v \rangle \\ &= \bar{\alpha} \alpha \beta + \bar{\alpha} \beta (-\alpha) + \beta \alpha (-\bar{\alpha}) + \beta^2 \langle v, v \rangle\end{aligned}$$

$$\begin{aligned}
&= -\beta\alpha\bar{\alpha} + \beta^2\langle v, v \rangle \\
&= \beta(-|\alpha|^2 + \beta\langle v, v \rangle) \\
&= \beta(\langle u, u \rangle\langle v, v \rangle - |\langle u, v \rangle|^2)
\end{aligned}$$

If $\beta = \langle u, u \rangle = 0 \Rightarrow u = 0$, Cauchy-Schwartz inequality is trivially true, both sides 0.

Otherwise $\beta > 0$ and $\langle \alpha u + \beta v, \alpha u + \beta v \rangle \geq 0$, so we have

$$\langle u, u \rangle\langle v, v \rangle - |\langle u, v \rangle|^2 \geq 0 \implies |\langle u, v \rangle|^2 \leq \langle u, u \rangle\langle v, v \rangle$$

$$\implies |\langle u, v \rangle| \leq \|u\| \|v\| \quad (\text{non-negative square roots})$$

Triangle inequality

Theorem: Triangle Inequality

If V is an inner product space, $u, v \in V$, then

$$\|u + v\| \leq \|u\| + \|v\|$$

Proof:

i) Over \mathbb{R} : By definition

$$\begin{aligned}
\|u + v\|^2 &= \langle u + v, u + v \rangle \\
&= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle \\
&= \|u\|^2 + 2\langle u, v \rangle + \|v\|^2 \\
&\leq \|u\|^2 + 2\|u\|\|v\| + \|v\|^2 \quad \text{Cauchy-Schwartz inequality} \\
&= (\|u\| + \|v\|)^2
\end{aligned}$$

Taking non-negative square root

$$\|u + v\| \leq \|u\| + \|v\|$$

ii) Over \mathbb{C}

$$\begin{aligned}
\|u + v\|^2 &= \langle u + v, u + v \rangle \\
&= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle \\
&= \|u\|^2 + \langle u, v \rangle + \langle \bar{u}, v \rangle + \|v\|^2 \\
&= \|u\|^2 + 2\operatorname{Re}(\langle u, v \rangle) + \|v\|^2 \quad \text{since } z + \bar{z} = \operatorname{Re}(z) \quad \forall z \in \mathbb{C} \\
&\leq \|u\|^2 + 2|\langle u, v \rangle| + \|v\|^2 \quad \text{since } \operatorname{Re}(z) \leq |z| \quad \forall z \in \mathbb{C}
\end{aligned}$$

$$\leq \|u\|^2 + 2\|u\|\|v\| + \|v\|^2 \quad \text{by Cauchy Schwartz inequality}$$

$$= (\|u\| + \|v\|)^2$$

$$\Rightarrow \|u+v\|^2 \leq (\|u\| + \|v\|)^2$$

$$\Rightarrow \|u+v\| \leq \|u\| + \|v\| \quad \text{non-negative square root}$$

■

Cosine Angle

On real inner product space

$$-\|u\|\|v\| < \langle u, v \rangle \leq \|u\|\|v\|$$

$$\Rightarrow -1 \leq \frac{\langle u, v \rangle}{\|u\|\|v\|} \leq 1$$

Can use this to define the cosine of the angle between u and v

$$\cos \theta = \frac{\langle u, v \rangle}{\|u\|\|v\|}$$

Metric on an inner product space

Definition

In any inner product space V , the corresponding **metric or distance function** is a function

$$d: V \times V \rightarrow \mathbb{R}$$

$$d(u, v) = \|u - v\|$$

The metric on an inner product space V satisfies

$\forall u, v, w \in V$:

- i) (positivity) $d(u, v) \geq 0$
- ii) (symmetry) $d(u, v) = d(v, u)$
- iii) (triangle inequality): $d(u, w) \leq d(u, v) + d(v, w)$
- iv) $d(u, v) = 0 \iff u = v$

Remark: We defined norm with help of inner product. Then used norm to define a metric.

$$\{\text{metric spaces}\} \subseteq \{\text{normed spaces}\} \subseteq \{\text{inner product spaces}\}$$

vector space for which a norm is defined

Examples of normed spaces

In \mathbb{R}^n , with dot product

$$\text{if } v = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad u = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

$$\|v\| = \sqrt{x_1^2 + \dots + x_n^2}$$

$$d(u, v) = \sqrt{(y_1 - x_1)^2 + \dots + (y_n - x_n)^2}$$

standard Euclidean metric

ORTHOGONALITY

Let V be an inner product space

Definition Orthogonal

Two vectors u, v of an inner product space are said to be **orthogonal** iff

$$\langle u, v \rangle = 0$$

Orthogonal vectors denoted by $u \perp v$

Orthonormal Vectors

Definition

A set S of non-zero vectors in an inner product space is said to be **orthogonal** if $u \perp v$ for all distinct pair of vectors in S

$$\langle v_i, v_j \rangle = 0 \quad i \neq j \quad \forall v_i, v_j \in S$$

If all $u \in S$ is a unit vector, then S is said to be **orthonormal**.

Note if $\langle u, v \rangle = 0$, then $\langle v, u \rangle = 0$ since $\langle u, v \rangle = \langle v, u \rangle$ (over \mathbb{R})

$$\langle v, u \rangle = \overline{\langle u, v \rangle} = \overline{0} = 0 \quad (\text{over } \mathbb{C})$$

For any $v \in V$, we have $\langle v, 0 \rangle = 0$ since

$$\begin{aligned} \langle v, 0 \rangle &= \langle v, w - w \rangle \quad \text{for } \forall w \in W \\ &= \langle v, w \rangle + \langle v, -w \rangle \\ &= \langle v, w \rangle - \langle v, w \rangle \\ &= 0 \end{aligned}$$

Similarly $\langle 0, v \rangle = 0 \quad \forall v \in V$

\implies **0 vector orthogonal to every vector**

Theorem

Any orthogonal set in an inner product space V is linearly independent.

Hence V has dimension n and S has n elements, S is a basis on V

Proof:

Suppose $S \subseteq V$, subset of non-zero vectors $v \in S$ $v \neq 0$ in V such that

$$\langle u, v \rangle = 0 \quad \forall u, v \in S, u \neq v$$

Let v_1, \dots, v_k be k distinct vectors in S

$$S = \{v_1, \dots, v_k\}$$

Suppose $\exists \alpha_1, \dots, \alpha_n \in \mathbb{F}$ s.t

$$\alpha_1 v_1 + \dots + \alpha_k v_k = 0$$

Take inner product with v_i

$$\begin{aligned} 0 &= \langle v_i, 0 \rangle = \langle v_i, \alpha_1 v_1 + \dots + \alpha_k v_k \rangle \\ &= \langle v_i, \alpha_1 v_1 \rangle + \dots + \langle v_i, \alpha_k v_k \rangle \\ &= \alpha_1 \langle v_i, v_1 \rangle + \dots + \alpha_k \langle v_i, v_k \rangle \\ &= \alpha_i \langle v_i, v_i \rangle \end{aligned}$$

Since $v_i \neq 0$, $\langle v_i, v_i \rangle \neq 0 \implies \alpha_i = 0 \quad \forall i$

$\implies v_i$ linearly independent.

Note: if (v_1, \dots, v_n) orthogonal basis for V ,

Then any $v \in V$ can be rewritten as

$$v = \alpha_1 v_1 + \dots + \alpha_n v_n \quad \text{for some } \alpha_1, \dots, \alpha_n \in \mathbb{F}$$

Easy to find co-efficients α_i :

$$\begin{aligned} \langle v_i, v \rangle &= \langle v_i, v \rangle = \langle v_i, \alpha_1 v_1 + \dots + \alpha_n v_n \rangle \\ &= \alpha_1 \langle v_i, v_1 \rangle + \dots + \alpha_n \langle v_i, v_n \rangle \\ &= \alpha_i \langle v_i, v_i \rangle \end{aligned}$$

$$\implies \alpha_i = \frac{\langle v_i, v \rangle}{\|v_i\|^2}$$

Examples

1) In \mathbb{R}^n (with standard inner dot product)

The standard basis is orthonormal

2) In \mathbb{R}^3 , with standard inner product

$$\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 5 \\ 4 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}$$

form an orthogonal basis but not orthonormal since not normal

Can get orthonormal basis by dividing each vector by norm

$$\left\| \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right\| = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3} \implies \begin{pmatrix} 1/\sqrt{3} \\ -1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix}$$

$$\left\| \begin{pmatrix} 5 \\ 4 \\ -1 \end{pmatrix} \right\| = \sqrt{5^2 + 4^2 + (-1)^2} = \sqrt{42} \implies \begin{pmatrix} 5/\sqrt{42} \\ 4/\sqrt{42} \\ -1/\sqrt{42} \end{pmatrix}$$

$$\left\| \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} \right\| = \sqrt{(-1)^2 + (2)^2 + (3)^2} = \sqrt{14} \implies \begin{pmatrix} -1/\sqrt{14} \\ 2/\sqrt{14} \\ 3/\sqrt{14} \end{pmatrix}$$

3) In \mathbb{C}^2 (with standard Hermitian inner product)

$$\begin{pmatrix} i/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}, \begin{pmatrix} 1/\sqrt{2} \\ i/\sqrt{2} \end{pmatrix}$$

form orthonormal basis

$$\left\langle \begin{pmatrix} i/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}, \begin{pmatrix} 1/\sqrt{2} \\ i/\sqrt{2} \end{pmatrix} \right\rangle = \overline{\left(\frac{-i}{\sqrt{2}} \right)} \frac{1}{\sqrt{2}} + \left(\frac{i}{\sqrt{2}} \right) \frac{i}{\sqrt{2}} = 0$$

Orthogonal and Unitary Matrices

Definition Orthogonal/Unitary

We say a real matrix $Q \in M_{n \times n}(\mathbb{R})$ is **orthogonal** when

$$Q^T Q = I_n \quad (Q^{-1} = Q^T)$$

We say a complex matrices $P \in M_{n \times n}(\mathbb{C})$ is **unitary** when

$$P^T P = I_n \quad (P^{-1} = P^T)$$

Lemma

i) A basis v_1, \dots, v_n of \mathbb{R}^n is orthonormal for the standard real inner product

these are the columns of an orthogonal matrix Q .

ii) A basis v_1, \dots, v_n of \mathbb{C}^n is orthonormal for the standard Hermitian inner product

these are the columns of a unitary matrix Q .

Proof:

1) On \mathbb{R}^n , we have $\langle v_j, v_k \rangle = v_j^T I_n v_k = v_j^T v_k$

dot product

Basis orthonormal $\iff v_j^T v_k = \delta_{jk}$ (like matrix multiplication)

So \iff the v_i are columns of a matrix Q with $Q^T Q = I_n$

2) Similar for \mathbb{C}^n

Remark: Orthogonal matrices preserve the standard real inner product on \mathbb{R}^n

Let Q be an $n \times n$ orthogonal $n \times n$ matrix, $u, v \in \mathbb{R}^n$

$$\langle Qu, Qv \rangle = (Qu)^T I_n (Qv)$$

$$= (Qu)^T Qu$$

$$= u^T \underbrace{Q^T Q}_{I_n} u$$

$$= u^T v = \langle u, v \rangle$$

Similarly, unitary matrices preserve standard Hermitian inner product on \mathbb{C}^n

if $P \in M_{n \times n}(\mathbb{C})$ is unitary, then

$$\langle P\mathbf{u}, P\mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle \quad \forall \mathbf{u}, \mathbf{v} \in \mathbb{C}^n.$$

Example

Writing last example in matrix form

$$Q = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{5}{\sqrt{42}} & -\frac{1}{\sqrt{14}} \\ -\frac{1}{\sqrt{3}} & \frac{4}{\sqrt{42}} & \frac{2}{\sqrt{14}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{42}} & \frac{3}{\sqrt{14}} \end{pmatrix} \quad \text{orthogonal matrix}$$

$$P = \begin{pmatrix} \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \end{pmatrix} \quad \text{unitary matrix}$$

Projection of a vector

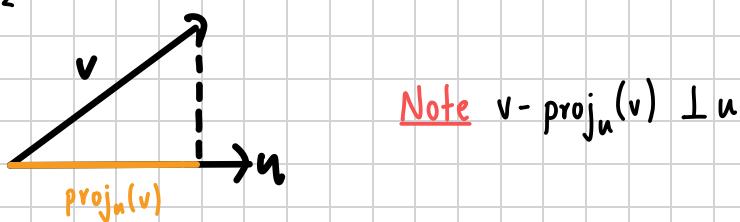
Definition

Let V be an inner product space, let $\mathbf{u} \in V$ be a non-zero vector. The vector

$$\text{proj}_{\mathbf{u}}(\mathbf{v}) = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u}$$

is called the projection of \mathbf{v} in direction of \mathbf{u} or projection of \mathbf{v} onto $\text{sp}(\mathbf{u})$

In \mathbb{R}^2



Lemma

Suppose that $S = \{\mathbf{w}_1, \dots, \mathbf{w}_k\}$ is an orthogonal set in an inner product space V and that \mathbf{v} is any vector in V . Then the vector

$$\mathbf{w} = \mathbf{v} - \sum_{i=1}^k \text{proj}_{\mathbf{w}_i}(\mathbf{v}) = \mathbf{v} - \sum_{i=1}^k \frac{\langle \mathbf{w}_i, \mathbf{v} \rangle}{\langle \mathbf{w}_i, \mathbf{w}_i \rangle} \mathbf{w}_i$$

is orthogonal to each vector in S and consequently to each vector in the span of S in V

Proof

For each $j = 1, \dots, k$, we have

$$\langle w_j, w \rangle = \left\langle w_j, v - \sum_{i=1}^k \text{proj}_{w_i}(v) \right\rangle$$

$$= \left\langle w_j, v - \sum_{i=1}^k \frac{\langle w_i, v \rangle}{\langle w_i, w_i \rangle} w_i \right\rangle$$

linearity

$$= \langle w_j, v \rangle - \sum_{i=1}^k \left\langle w_j, \underbrace{\frac{\langle w_i, v \rangle}{\langle w_i, w_i \rangle} w_i}_{\in F} \right\rangle$$

linearity

$$= \langle w_j, v \rangle - \sum_{i=1}^k \frac{\langle w_i, v \rangle}{\langle w_i, w_i \rangle} \langle w_j, w_i \rangle$$

$$= \langle w_j, v \rangle - \frac{\langle w_j, v \rangle}{\langle w_j, w_j \rangle} \langle w_j, w_j \rangle \quad S \text{ orthogonal set}$$

$$= 0$$

$\implies w \perp w_j$ for each $w_j \in S$

If $u \in \text{Sp}(S)$ then $u \in \sum_{i=1}^n \alpha_i w_i$ for some $\alpha_i \in F$

$$\text{So } \langle w, u \rangle = \left\langle w, \sum_{i=1}^k \alpha_i w_i \right\rangle$$

$$= \sum_{i=1}^k \alpha_i \langle w, w_i \rangle$$

$$= 0 \implies w \perp u \text{ for each } u \in \text{Sp}(S)$$

GRAM-SCHMIDT PROCESS

Theorem

Any finite dimensional inner product space V has an orthonormal basis

Proof: (Algorithm, important)

Start with any ordered basis (u_1, \dots, u_n) for V . Define

For each $j = 1, \dots, k$, we have

$$v_1 = u_1$$

$$v_2 = u_2 - \text{proj}_{v_1}(u_2) = u_2 - \frac{\langle v_1, u_2 \rangle}{\langle v_1, v_1 \rangle} v_1$$

$$v_3 = u_3 - \text{proj}_{v_1}(u_3) - \text{proj}_{v_2}(u_3) = u_3 - \sum_{j=1}^2 \text{proj}_{v_j}(u_3) = u_3 - \sum_{i=1}^2 \frac{\langle v_i, u_3 \rangle}{\langle v_i, v_i \rangle} v_i$$

⋮

$$v_n = u_n - \sum_{i=1}^{n-1} \text{proj}_{v_i}(u_n) = u_n - \sum_{j=1}^{n-1} \frac{\langle v_j, u_n \rangle}{\langle v_j, v_j \rangle} v_j$$

Then (v_1, \dots, v_n) is an orthogonal basis for V

Indeed for $1 \leq k \leq n$, we have

$$v_k = u_k - \sum_{i=1}^{k-1} \frac{\langle v_i, u_k \rangle}{\langle v_i, v_i \rangle} v_i$$

Rewrite as

$$u_k = v_k + \sum_{i=1}^{k-1} \frac{\langle v_i, u_k \rangle}{\langle v_i, v_i \rangle} v_i$$

$\underbrace{\quad}_{\in F \text{ scalar}}$

So any u_k can be written as a linear combination of the v_j with $j \leq k$

Since u_1, \dots, u_n span $V \implies v_1, \dots, v_n$ span V

$\implies \{v_1, \dots, v_n\}$ is a spanning set of size n and $\dim(V) = n$

\implies a basis for V

By lemma 7.33 v_k is orthogonal to v_1, \dots, v_{k-1}

Final step: normalize vectors

$\hat{v}_k = \frac{v_k}{\|v_k\|}$ is a unit vector $\implies (\hat{v}_1, \dots, \hat{v}_n)$ is an orthonormal basis

Note: Gram-Schmidt process depends on ordering of u_1, \dots, u_n

change order \rightsquigarrow different orthogonal basis

Example applying Gram-Schmidt process

i) Use Gram-Schmidt process to turn the basis

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \quad u_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

into an orthonormal basis for \mathbb{R}^3 , standard inner product (dot product)

$$\text{i) } v_1 = u_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

$$\text{ii) } v_2 = u_2 - \text{proj}_{v_1}(u_2) = u_2 - \frac{\langle v_1, u_2 \rangle}{\langle v_1, v_1 \rangle} v_1$$

$$= \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} - \frac{\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}}{\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$

$$\Rightarrow v_2 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$

$$\text{iii) } v_3 = u_3 - \text{proj}_{v_1}(u_3) - \text{proj}_{v_2}(u_3) = u_3 - \frac{\langle v_1, u_3 \rangle}{\langle v_1, v_1 \rangle} v_1 - \frac{\langle v_2, u_3 \rangle}{\langle v_2, v_2 \rangle} v_2$$

$$= \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} - \frac{\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}}{\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \frac{\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}}{\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1/6 \\ -1/6 \\ 1/3 \end{pmatrix}$$

Normalising

$$\hat{v}_1 = \frac{v_1}{\|v_1\|} = \frac{\begin{pmatrix} 1 \\ 0 \end{pmatrix}}{\sqrt{1^2 + 1^2 + 0}} = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix}$$

$$\hat{v}_2 = \frac{v_2}{\|v_2\|} = \frac{1}{\sqrt{3}} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$

$$\hat{v}_3 = \frac{v_3}{\|v_3\|} = \sqrt{6} \begin{pmatrix} 1/6 \\ -1/6 \\ 1/3 \end{pmatrix}$$

2) Use Gram-Schmidt to construct orthonormal basis for \mathbb{C}^2

Starting with

$$u_1 = \begin{pmatrix} 1 \\ i \end{pmatrix}, \quad u_2 = \begin{pmatrix} 2 \\ -i \end{pmatrix}$$

w.r.t standard Hermitian inner product

$$v_1 = u_1 = \begin{pmatrix} 1 \\ i \end{pmatrix}$$

$$v_2 = u_2 - \text{proj}_{v_1}(u_2) = u_2 - \frac{\langle v_1, u_2 \rangle}{\langle v_1, v_1 \rangle} v_1 = \begin{pmatrix} 2 \\ -i \end{pmatrix} - \frac{\langle \begin{pmatrix} 1 \\ i \end{pmatrix}, \begin{pmatrix} 2 \\ -i \end{pmatrix} \rangle}{\langle \begin{pmatrix} 1 \\ i \end{pmatrix}, \begin{pmatrix} 1 \\ i \end{pmatrix} \rangle} \begin{pmatrix} 1 \\ i \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ i \end{pmatrix} - \frac{1 \cdot 2 + i \cdot (-i)}{1 \cdot 1 + i \cdot i} \begin{pmatrix} 1 \\ i \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ -i \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ i \end{pmatrix} = \begin{pmatrix} 3/2 \\ -3/2i \end{pmatrix}$$

$\{v_1, v_2\}$ is an orthogonal basis for \mathbb{C}^2

Normalizing

$$\|v_1\| = \sqrt{\langle \begin{pmatrix} 1 \\ i \end{pmatrix}, \begin{pmatrix} 1 \\ i \end{pmatrix} \rangle} = \sqrt{2}$$

$$\|v_2\| = \sqrt{\langle \begin{pmatrix} 3/2 \\ -3/2i \end{pmatrix}, \begin{pmatrix} 3/2 \\ -3/2i \end{pmatrix} \rangle} = \sqrt{\frac{3}{2} \cdot \frac{3}{2} + \left(\frac{-3}{2}i\right) \cdot \left(\frac{-3}{2}i\right)} = \frac{3}{2}\sqrt{2}$$

$$\hat{v}_1 = \frac{v_1}{\|v_1\|} = \begin{pmatrix} 1/\sqrt{2} \\ i/\sqrt{2} \end{pmatrix} \quad \hat{v}_2 = \frac{v_2}{\|v_2\|} = \begin{pmatrix} 1/\sqrt{2} \\ -i/\sqrt{2} \end{pmatrix}$$

$\{\hat{v}_1, \hat{v}_2\}$ is an orthonormal basis

3) Legendre Polynomials

$$V = \mathbb{R}_2[x]$$

$$u_1 = 1, u_2 = x, u_3 = x^2, u_4 = x^3 \quad (\text{standard basis})$$

Use Gram-Schmidt process to get an orthogonal basis w.r.t inner product

$$\langle f, g \rangle = \int_{-1}^1 f(t) g(t) dt$$

$$p_1 = u_1$$

$$p_2 = u_2 - \text{proj}_{p_1}(u_2) = u_2 - \frac{\langle p_1, u_2 \rangle}{\langle p_1, p_1 \rangle} p_1 = x - \frac{\int_{-1}^1 t dt}{\int_{-1}^1 1^2 dt} \cdot 1 = x$$

$$p_3 = u_3 - \text{proj}_{p_1}(u_3) - \text{proj}_{p_2}(u_3) = x^2 - \frac{\int_{-1}^1 1 \cdot t^2 dt}{\int_{-1}^1 1 \cdot 1 dt} \cdot 1 - \frac{\int_{-1}^1 t \cdot t^2 dt}{\int_{-1}^1 t \cdot 1 dt} x = x^3 - \frac{1}{3}$$

$$p_4 = x^3 - \frac{3}{5}x$$

We get scaled Legendre polynomials

(standard scaling redefines $p_n(1) = 1$)

Calculations with respect to an orthonormal basis

Theorem

Let $\{v_1, \dots, v_n\}$ be an orthonormal basis for an inner product space V over a field \mathbb{F} (\mathbb{R} or \mathbb{C})

For $u, v \in V$, let $u = \sum_{i=1}^n \alpha_i v_i$, $v = \sum_{i=1}^n \beta_i v_i$ for some $\alpha_i, \beta_i \in \mathbb{F}$

Then

$$\text{i) } \langle u, v \rangle = \begin{cases} \sum_{i=1}^n \alpha_i \beta_i & \mathbb{F} = \mathbb{R} \\ \sum_{i=1}^n \bar{\alpha}_i \beta_i & \mathbb{F} = \mathbb{C} \end{cases}$$

ii) (Parseval's identity)

$$\|u\|^2 = \begin{cases} \sum_{i=1}^n \alpha_i^2 & \mathbb{F} = \mathbb{R} \\ \sum_{i=1}^n |\alpha_i|^2 & \mathbb{F} = \mathbb{C} \end{cases}$$

Proof:

$$\text{If } u = \sum_{i=1}^n \alpha_i v_i, \quad v = \sum_{i=1}^n \beta_i v_i$$

Then

$$\alpha_i = \langle v_i, u \rangle$$

If $\mathbb{F} = \mathbb{R}$:

$$\langle u, v \rangle = \left\langle u, \sum_{i=1}^n \beta_i v_i \right\rangle = \sum_{i=1}^n \beta_i \langle u, v_i \rangle \quad \text{by linearity in second argument}$$

$$= \sum_{i=1}^n \beta_i \langle v_i, u \rangle \quad \text{symmetric}$$

$$= \sum_{i=1}^n \beta_i \alpha_i$$

$$= \sum_{i=1}^n \alpha_i \beta_i$$

$$\text{so } \|u\|^2 = \langle u, u \rangle = \sum_{i=1}^n \alpha_i \alpha_i = \sum_{i=1}^n \alpha_i^2$$

Similar for \mathbb{C}

■

Example

$V = C([-\pi, \pi], \mathbb{R})$ and inner product

$$\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g(x) dx$$

Given an orthonormal set $\left\{ \frac{1}{\sqrt{2}}, \cos(2x) \right\}$ in V , find

$$\int_{-\pi}^{\pi} \sin^4 x dx \text{ without computing antiderivative}$$

$\left\{ \frac{1}{\sqrt{2}}, \cos(2x) \right\}$ orthonormal basis for subspace W of V given by

$$W = \text{span} \left(\frac{1}{\sqrt{2}}, \cos(2x) \right)$$

$\langle \cdot, \cdot \rangle$ also an inner product on W .

We have $\sin^4 x = (\sin^2 x)^2$

$$\sin^2 x = \frac{1 - \cos(2x)}{2} = \underbrace{\frac{1}{\sqrt{2}}}_{\alpha_1} \cdot \underbrace{\frac{1}{\sqrt{2}}}_{\alpha_2} + \left(-\frac{1}{2} \right) \cos(2x)$$

$$\begin{aligned} \text{So } \int_{-\pi}^{\pi} \sin^4 x dx &= \pi \langle \sin^2 x, \sin^2 x \rangle \\ &= \pi \|\sin^2 x\|^2 \\ &= \pi \left(\left(\frac{1}{\sqrt{2}} \right)^2 + \left(-\frac{1}{2} \right)^2 \right) \\ &= \frac{3\pi}{4} \end{aligned}$$

PROJECTIONS

Projection maps

Definition Complements/Projections

Let V be vector space, $U \subseteq V$ a subspace

i) A **complement** of U is a subspace W of V such that

$$V = U \oplus W$$

and $\forall v \in V$ can be uniquely written in form

$$v = u + w \quad \text{with } u \in U \text{ and } w \in W$$

ii) For V, U, W , the unique linear map

$$L: V \rightarrow U ;$$

$$L(v) = u \quad \forall v \in V$$

is called the **projection onto U along W**

iii) Furthermore $L: V \rightarrow U$ be a linear transformation. Then given a subspace U of V , L is called a **projection onto U** if it is the projection onto U along some complement of U .

iv) L is called a **projection (map)** if L is a projection from V to U for some subspace U

Lemma

Let $L: V \rightarrow V$ be a linear map. Then

$$L \text{ is a projection} \iff L^2 = L$$

Proof:

(\Rightarrow): If L is a projection onto U along W , where $V = U \oplus W$

Then any $\forall v \in V$, $v = u + w$, $u \in U$, $w \in W$

So we have $L(v) = u$ and $L(L(v)) = L(u) = u$

$$\Rightarrow L(L(v)) = L(v)$$

$$\Rightarrow L^2 = L$$

(\Leftarrow): Assume $L: V \rightarrow V$ is a linear map with $L^2 = L$

Let $W = \ker(L)$ and $U = \ker(I_v - L)$ identity on V

Then W and U are both subspaces of V

Need to show $V = U \oplus W$, i.e. $\forall v \in V$, we can write v as

$$v = u + w \quad \text{for some } u, w \in V$$

and $U \cap W = \{0\}$

Note if $v \in U \cap W \implies v \in U = \ker(I_v - L)$ and $v \in \ker(L)$

$$\begin{aligned} (1) \quad v \in U = \ker(I_v - L) &\implies (I_v - L)(v) = 0 \\ &\implies I(v) - L(v) = 0 \\ &\implies v - L(v) = 0 \\ &\implies L(v) = v \end{aligned} \quad \left. \begin{aligned} (2) \quad v \in W = \ker(L) &\implies L(v) = 0 \end{aligned} \right\} \implies v = 0$$

Hence $U \cap W = \{0\}$

Also each $v \in V$ can be written as

$$v = \underbrace{L(v)}_{u \in U} + \underbrace{v - L(v)}_{w \in W}$$

Note that $u = L(v) \in U = \ker(I_v - L)$ since

$$\begin{aligned} (I_v - L)(u) &= (I_v - L)(L(v)) \\ &= L(v) - L(L(v)) \\ &= L(v) - L(v) \quad L^2 = L \\ &= 0 \quad \implies L(u) = u \end{aligned}$$

and $w = v - L(v) \in W = \ker(L)$ since

$$\begin{aligned} L(w) &= L(v - L(v)) \\ &= L(v) - L(L(v)) \\ &= L(v) - L(v) \\ &= 0 \end{aligned}$$

This proves that $V = U \oplus W$

Since $L(v) = L(u+w) = L(u) + L(w) = u$

$\Rightarrow L$ is the projection from V to U along W

■

Example of Projections

$$\mathbb{R}^2 = U \oplus W$$

$$U = x\text{-axis}$$

$$W = y\text{-axis}$$

Then map $f: \mathbb{R}^2 \rightarrow U$,

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x \\ 0 \end{pmatrix}$$

is a projection of \mathbb{R}^2 onto x axis (along y -axis)

Note: $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x-y \\ 0 \end{pmatrix} + \begin{pmatrix} y \\ y \end{pmatrix}$

$$\begin{matrix} \uparrow & \uparrow \\ x\text{-axis} & \text{line } x=y \end{matrix}$$

So $\mathbb{R}^2 = U \oplus W$ where $U = x$ axis

$$W = \text{line } x=y$$

The map $g: \mathbb{R}^2 \rightarrow U$

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x-y \\ 0 \end{pmatrix}$$

projection of \mathbb{R}^2 onto x -axis (along $x=y$)

Lemma

Every projection map is diagonalizable and has eigenvalues 0 and 1 only

Orthogonal Complements and orthogonal projections

Definition, Orthogonal Complement

If V is an inner product space and U is a subspace of V , then the **orthogonal complement** of U in V is

$$U^\perp = \{v \in V \mid \langle u, v \rangle = 0 \quad \forall u \in U\}$$

U^\perp is a subspace of V

Definition

Let V be an inner product space. Let L be a projection of V to U along W

If $W = U^\perp$, then we say L is the **orthogonal projection** from V to U .

Example.

1) $V = \mathbb{R}^2$

$U = x\text{-axis}$ and $W = y\text{-axis}$, then

$$W = U^\perp$$

w.r.t standard inner product, since

$$\begin{pmatrix} x \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ y \end{pmatrix} = 0 \quad \forall x, y \in \mathbb{R}$$

The map $f: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x \\ 0 \end{pmatrix}$ is the orthogonal projection of \mathbb{R}^2 onto U

2) $V = \mathbb{R}^2$

$$\text{inner product} = \left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = x_1 y_1 - x_1 y_2 - x_2 y_1 + 3 x_2 y_2$$

This is a bilinear form, we can represent by a matrix

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 3 \end{pmatrix}$$

$$\text{so } \left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = (x_1, x_2) A \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

inner product since A symmetric and positive definite

Sylvester's criterion

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 3 \end{pmatrix}$$

$$\cdot |1| > 0$$

$$\cdot \begin{vmatrix} 1 & -1 \\ -1 & 3 \end{vmatrix} = 1 \cdot 3 - (-1)(-1) = 1 > 0$$

Note $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x-y \\ 0 \end{pmatrix} + \begin{pmatrix} y \\ y \end{pmatrix}$

$\epsilon \mathbb{R}$ ϵU ϵW

x -axis line $x=y$

So map $g: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x-y \\ 0 \end{pmatrix}$ is a projection onto U along W

$$\text{But } \left\langle \begin{pmatrix} x \\ 0 \end{pmatrix}, \begin{pmatrix} y \\ y \end{pmatrix} \right\rangle = xy - xy - 0 \cdot y + 3 \cdot 0 \cdot y = 0 \quad \forall x, y \in \mathbb{R}$$

$$\Rightarrow W = U^\perp$$

Hence g is the orthogonal projection onto U w.r.t this inner product

Example

Let V be an inner product space, $u \in V$ a non-zero vector. Then map

$$\text{proj}_u: V \rightarrow V \quad (\text{used in Gram-Schmidt process})$$

$$\text{given by } \text{proj}_u(v) = \frac{\langle u, v \rangle}{\langle u, u \rangle} u$$

so a projection from V to $\text{Sp}(u)$

$$\text{clearly } \text{Im}(\text{proj}_u) \subseteq \text{Sp}(u)$$

Also for $x \in \text{Sp}(u)$, $x = \lambda u$ for some $\lambda \in \mathbb{F}$

$$\begin{aligned} \text{proj}_u(x) &= \text{proj}_u(\lambda u) \\ &= \frac{\langle u, \lambda u \rangle}{\langle u, u \rangle} u \\ &= \lambda \frac{\langle u, u \rangle}{\langle u, u \rangle} u \quad \text{linearity} \\ &= \lambda u = x \end{aligned}$$

$\Rightarrow \text{proj}_u$ is a projection map.

3. Matrix Decomposition

QR Decomposition

Theorem QR Decomposition

If A is a real $m \times n$ matrix with linearly independent columns (i.e. $\text{rank}(A) = n$), then A can be factored as

$$A = QR$$

where Q is the $m \times n$ matrix with orthonormal column vectors, and R is an $n \times n$ invertible upper triangular matrix

The decomposition can be found by applying Gram-Schmidt process to column vectors

$$u_1, \dots, u_n \text{ of } A.$$

Then Q consists of the columns $\hat{v}_1, \dots, \hat{v}_n$

Entries of R are given by

$$R_{jk} = \langle \hat{v}_j, u_k \rangle = \left\langle \frac{v_j}{\|v_j\|}, u_k \right\rangle = \frac{\langle v_j, u_k \rangle}{\sqrt{\langle v_j, v_j \rangle}} = \frac{\langle v_j, u_k \rangle}{\|v_j\|}$$

By construction, R has 0's below the diagonal

Example of QR Decomposition

Using example on page 71

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \quad u_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \quad u_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} = (u_1 \ u_2 \ u_3)$$

Applying Gram-Schmidt

$$\begin{aligned} \hat{v}_1 &= \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix} & \hat{v}_2 &= \begin{pmatrix} -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix} & \hat{v}_3 &= \begin{pmatrix} \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{pmatrix} \\ Q &= \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \end{pmatrix} & & & & = (\hat{v}_1, \hat{v}_2, \hat{v}_3) \end{aligned}$$

$R_{jk} = \langle \hat{v}_j, u_k \rangle$, therefore

$$\cdot R_{11} = \langle \hat{v}_1, u_1 \rangle = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \sqrt{2}$$

$$\cdot R_{12} = \langle \hat{v}_1, u_2 \rangle = \langle \hat{v}_1, u_2 \rangle = \frac{\langle v_1, u_2 \rangle}{\langle v_1, v_2 \rangle} \|v_1\| = 1 \cdot \sqrt{2} = \sqrt{2}$$

$$\cdot R_{13} = \langle \hat{v}_1, u_3 \rangle = \frac{1}{\sqrt{2}}$$

$$\cdot R_{21} = \langle \hat{v}_2, u_1 \rangle = 0$$

$$\cdot R_{22} = \langle \hat{v}_2, u_2 \rangle = \sqrt{2}$$

$$\cdot R_{23} = \langle \hat{v}_2, u_3 \rangle = \frac{2}{\sqrt{3}}$$

$$\cdot R_{31} = \langle \hat{v}_3, u_1 \rangle = 0$$

$$\cdot R_{32} = \langle \hat{v}_3, u_2 \rangle = 0$$

$$\cdot R_{33} = \langle \hat{v}_3, u_3 \rangle = \frac{1}{\sqrt{6}}$$

$$R = \begin{pmatrix} \sqrt{2} & \sqrt{2} & 1/\sqrt{2} \\ 0 & \sqrt{3} & 2/\sqrt{3} \\ 0 & 0 & 1/\sqrt{6} \end{pmatrix}$$

4. Spectral Theorems

SELF ADJOINT LINEAR MAPS

Definition Adjoint

Let V be an inner product space, real or complex.

Let $L: V \rightarrow V$ be a linear map. The **adjoint** of L^* is the linear map

$$L^*: V \rightarrow V$$

$$\langle L^*(u), v \rangle = \langle u, L(v) \rangle \quad \forall u, v \in V$$

If $L = L^*$, then we say that L is a **self-adjoint** linear map

Adjoint vs Dual Map

Recall that if $L: V \rightarrow W$ is a linear map, then it has a corresponding dual map

$$L^*: W^* \rightarrow V^*$$

between the corresponding dual spaces, given by

$$L^*(f) = f \circ L \quad , \quad f \in W^*$$

In the example, $V = \mathbb{R}^n$ and $W = \mathbb{R}^m$, if L is represented (w.r.t standard basis) by matrix A , then L^* is represented (with respect to the dual of the standard basis) by the matrix A^T .

Using the same notation is not a coincidence;

Every finite dimensional vector space V is isomorphic to its dual space

$$V \cong V^*$$

So in the case of a linear map $L: V \rightarrow V$, its dual map is $L^*: V^* \rightarrow V^*$ but using an isomorphism b/w V and V^* , we can choose to view the dual map L^* as a map from V to V

$$L^*: V \rightarrow V$$

So the dual map can be identified with the adjoint map, hence we use the same notation, for it both represented by A^T .

Many isomorphisms between V and V^* . If V is an inner product space, can also use an inner product to define an isomorphism b/w V and V^*

Examples of self adjoint linear maps

$V = \mathbb{R}^n$, standard inner product

$L: V \rightarrow V$ given by

$$L: \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \text{ where } A \in M_{n \times n}(\mathbb{R})$$

matrix represent L w.r.t standard basis

Then its adjoint $L^*: V \rightarrow V$ is given by

$$L^*: \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto A^T \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Check: $u = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \quad v = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$

$$\begin{aligned} \langle L^*(u), v \rangle &= \left\langle L^* \left(\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \right) \right\rangle \\ &= \left\langle A^T \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \right\rangle \quad \text{standard inner product } \langle u, v \rangle = u^T v \\ &= \left(A^T \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \right)^T \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \\ &= \left(A^T \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \right)^T \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \\ &= (x_1 \cdots x_n) A \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \\ &= \left\langle \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, A \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \right\rangle \\ &= \langle u, Av \rangle \\ &= \langle u, L(v) \rangle \end{aligned}$$

$\Rightarrow L^*$ adjoint of L

$$\begin{aligned}
 L \text{ self-adjoint} &\iff L = L^* \\
 &\iff A = A^T \\
 &\iff A \text{ symmetric}
 \end{aligned}$$

For V finite dimensional, many isomorphisms $V \rightarrow V^*$ (one for each choice of basis)

If V is also an inner product space, can define

$$T: V \rightarrow V^* \text{ by}$$

$$T(v) = \langle v, - \rangle$$

i.e. T takes $v \in V$ and outputs the linear functional $f = T(v) \in V^*$ where $f: V \rightarrow \mathbb{F}$ given by

$$f(w) = \langle v, w \rangle \quad \forall w \in V$$

T is an isomorphism

Example

$V = \mathbb{C}^2$ with standard Hermitian product and let

$L: V \rightarrow V$ be given by

$$L: \begin{pmatrix} a \\ b \end{pmatrix} \mapsto \begin{pmatrix} a+ib \\ -ai \end{pmatrix}$$

Showing L is self adjoint

$$L \text{ is self adjoint} \iff L = L^*$$

$$\iff \langle L(u), v \rangle = \langle u, L(v) \rangle \quad \forall u, v \in V$$

$$\text{Let } u = \begin{pmatrix} a \\ b \end{pmatrix} \quad v = \begin{pmatrix} c \\ d \end{pmatrix}$$

$$\langle L(u), v \rangle = \langle L\left(\begin{pmatrix} a \\ b \end{pmatrix}\right), \begin{pmatrix} c \\ d \end{pmatrix} \rangle$$

$$= \left\langle \begin{pmatrix} a+ib \\ -ai \end{pmatrix}, \begin{pmatrix} c \\ d \end{pmatrix} \right\rangle$$

$$= \overline{a+ib} \cdot c + \overline{-ai} \cdot d$$

$$= \bar{a}c + \bar{b}c + ad$$

$$\langle u, L(v) \rangle = \left\langle \begin{pmatrix} a \\ b \end{pmatrix}, L\left(\begin{pmatrix} c \\ d \end{pmatrix}\right) \right\rangle = \left\langle \begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c+id \\ -ci \end{pmatrix} \right\rangle$$

$$= \bar{a} \cdot (c+id) + \bar{b} \cdot (-ci)$$

$$= \bar{a}c - \bar{b}c^* + adi$$

Expressions equal \Rightarrow self adjoint

Apply L to standard basis, for \mathbb{C}^2 to find matrix representing L (w.r.t basis)

$$L \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1+0i \\ -i \end{pmatrix} = \begin{pmatrix} 1 \\ -i \end{pmatrix}$$

$$L \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0+i \\ 0 \end{pmatrix} = \begin{pmatrix} i \\ 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & i \\ -i & 0 \end{pmatrix} \quad A \text{ Hermitian}$$

Eigenvalues

$$\det \begin{pmatrix} \lambda-1 & -i \\ i & \lambda \end{pmatrix} = \lambda^2 - \lambda^2 - 1 = 0$$

$$\Rightarrow \lambda = \frac{1 \pm \sqrt{5}}{2} \quad \text{real}$$

Self-adjoint operators vs Hermitian matrices

Proposition

Let V be an inner product space, $L: V \rightarrow V$ be a linear map and \mathcal{B} be an orthonormal ordered basis for V

Then L is self-adjoint $\iff M_{\mathcal{B}}(L)$, the matrix representing L w.r.t \mathcal{B} is Hermitian

Proof:

Let $\mathcal{B} = (v_1, \dots, v_n)$ be an orthonormal ordered basis for V

Let $A = M_{\mathcal{B}}(L)$ be the matrix representing L w.r.t basis \mathcal{B}

$B = M_{\mathcal{B}}(L^*)$ be the matrix representing L^* w.r.t basis \mathcal{B}

(\Rightarrow): Recall

$$L(v_j) = \sum_{k=1}^n A_{kj} v_k$$

so by linearity in 2nd argument, we have

$$\langle v_i, L(v_j) \rangle = \langle v_i, \sum_{k=1}^n A_{kj} v_k \rangle$$

$$= \sum_{k=1}^n A_{kj} \langle v_i, v_k \rangle \quad \text{only non-zero term is } \langle v_i, v_i \rangle = 1, \quad k=i$$

$$= A_{ij}$$

$$L^*(v_i) = \sum_{k=1}^n B_{ki} v_k$$

So

$$\begin{aligned} \langle L^*(v_j), v_j \rangle &= \left\langle \sum_{k=1}^n B_{ki} v_k, v_j \right\rangle \\ &= \sum_{k=1}^n \bar{B}_{kj} \langle v_k, v_i \rangle \quad \text{only non-zero term,} \\ &= \bar{B}_{ji} \end{aligned}$$

$$\text{So } A_{ij} = \bar{B}_{ji} \quad \forall i, j \Rightarrow A = A^+$$

$\Rightarrow A$ is Hermitian

(\Leftarrow): Assume A Hermitian and $\mathcal{B} = (v_1, \dots, v_n)$ be an orthonormal basis of V . Let

$$L: V \rightarrow V$$

be the linear map represented by A w.r.t \mathcal{A} .

By going backwards direction of " \Rightarrow " proof, we get

$$\langle L(v_i), v_j \rangle = \langle v_i, L(v_j) \rangle \quad \forall v_i, v_j \in \mathcal{B}$$

$$\text{Let } u, v \in V \text{ with } u = \sum_{i=1}^n \alpha_i v_i$$

$$v = \sum_{j=1}^n \beta_j v_j \quad \alpha_j, \beta_j \in \mathbb{C}$$

$$\text{Then, } \langle L(u), v \rangle = \left\langle L\left(\sum_{i=1}^n \alpha_i v_i\right), \sum_{j=1}^n \beta_j v_j \right\rangle$$

$$= \left\langle \sum_{i=1}^n \alpha_i L(v_i), \sum_{j=1}^n \beta_j v_j \right\rangle$$

$$= \sum_{i=1}^n \sum_{j=1}^n \bar{\alpha}_i \beta_j \langle L(v_i), v_j \rangle$$

$$= \sum_{i=1}^n \sum_{j=1}^n \bar{\alpha}_i \beta_i \langle v_i, L(v_j) \rangle$$

$$= \left\langle \sum_{i=1}^n \alpha_i v_i, L\left(\sum_{j=1}^n \beta_j v_j\right) \right\rangle$$

$$= \langle u, L(v) \rangle$$

Proposition

The eigenvalues of self-adjoint maps are real

Proof:

Let $L: V \rightarrow V$ be self adjoint

An eigenvalue λ of L satisfies

$$L(v) = \lambda v \text{ for some non-zero } v \in V$$

$$\text{We have } \langle v, L(v) \rangle = \langle v, \lambda v \rangle = \lambda \langle v, v \rangle$$

$$\text{Since } L \text{ self adjoint, we have } \langle v, L(v) \rangle = \langle L(v), v \rangle$$

$$= \langle \lambda v, v \rangle = \bar{\lambda} \langle v, v \rangle$$

$$v \neq 0 \implies \langle v, v \rangle \neq 0 \text{ (positive definite)}$$

$$\implies \lambda = \bar{\lambda}$$

$$\implies \lambda \in \mathbb{R}$$

Diagonalizability of self-adjoint maps, and orthogonal eigenvectors

Theorem

A linear map $L: V \rightarrow V$ on a finite dimensional vector space is said to be **diagonalizable** if

(1) V has a basis of eigenvectors

(2) minimal polynomial $d_L(x)$ of L factoring into distinct linear factors (no repeat roots)

Proposition

Every self-adjoint $L: V \rightarrow V$ on a finite dimensional complex inner product space V is diagonalizable

Proof: (by contradiction):

Since we are working over \mathbb{C} , every non-constant polynomial is a product of linear factors

So $d_L(x)$, minimal polynomial of L is a product of linear factors

L diagonalizable $\Leftrightarrow d_L(x)$ has no repeated factors

If $d_L(x)$ has repeated factors, then

$$d_L(x) = (x - \lambda)^2 p(x) \text{ for some polynomial } p(x)$$

Hence

$$d_L(L) = (L - \lambda I)^2 p(L) = 0$$

identity map 0 map

but $\exists v \in V$ such that $((L - \lambda I) p(L))(v) \neq 0$

Hence

$$\star \quad \langle ((L - \lambda I) p(L))(v), ((L - \lambda I) p(L))(v) \rangle \neq 0$$

Note that since L is self adjoint, for any $u_1, u_2 \in V$, we have

$$\langle (L - \lambda I)(u_1), u_2 \rangle = \langle L(u_1) - \lambda u_1, u_2 \rangle$$

$$= \langle L(u_1), u_2 \rangle - \bar{\lambda} \langle u_1, u_2 \rangle$$

since L is self adjoint and λ eigenvalue of L , hence real

$$= \langle L(u_1), u_2 \rangle - \lambda \langle u_1, u_2 \rangle$$

$$= \langle u_1, L(u_2) - \lambda u_2 \rangle$$

$$= \langle u_1, (L - \lambda I)(u_2) \rangle$$

So \star becomes

$$0 \neq \langle (p(L))(v), (L - \lambda I)^2 (p(L))(v) \rangle = \langle (p(L))(v), 0 \rangle = 0$$

Contradiction \star

Hence $d_L(x)$ factors into distinct linear factors \Rightarrow diagonalizable

■

Proposition

Every self-adjoint linear map $L: V \rightarrow V$ on a finite dimensional real inner product space is diagonalizable

Proof:

Let V be a real finite dimensional inner product space

$L: V \rightarrow V$ be self adjoint

Let A be the matrix of L w.r.t some orthonormal basis of V

Then, by prop pg 86 A is Hermitian (Also A is real \Rightarrow symmetric)

Let $T: \mathbb{C}^n \rightarrow \mathbb{C}^n$ be the linear map whose matrix w.r.t the standard basis for \mathbb{C}^n is A .

Then, by prop pg 86 T is self adjoint

prop pg 88, eigenvalues are real

prop pg 89 T is diagonalizable \Rightarrow minimal polynomial $d_T(x)$ is a product of distinct linear factors

(of form $x - \lambda \in \mathbb{R}$)

d_T is also the minimal polynomial of $A \Rightarrow$ minimal polynomial of L

$\Rightarrow L$ is diagonalizable

Proposition

If $L: V \rightarrow V$ is a self adjoint linear map, then any 2 eigenvectors of L associated to **distinct** eigenvalues are orthogonal

Proof:

Let v_1, v_2 be eigenvectors of L with eigenvalues of L with eigenvalues $\lambda_1, \lambda_2, \lambda_1 \neq \lambda_2$

$$\langle v_1, L(v_2) \rangle = \langle v_1, \lambda v_2 \rangle$$

$$= \lambda \langle v_1, v_2 \rangle$$

L self adjoint

$$\langle v_1, L(v_2) \rangle = \langle L(v_1), v_2 \rangle = \langle \lambda_1 v_1, v_2 \rangle$$

$$= \bar{\lambda}_1 \langle v_1, v_2 \rangle$$

$$= \lambda_1(v_1, v_1) \quad \text{eigenvalues real, self adjoint map}$$

$$\Rightarrow \lambda_1(v_1, v_2) = \lambda_2(v_1, v_2)$$

$$\Rightarrow (\lambda_1 - \lambda_2)(v_1, v_2) = 0$$

H
D

Spectral Theorems

Theorem Spectral Theorem for self-adjoint linear transformations

Let V be finite dimensional vector space (complex or real) inner product space, and let

$$L: V \rightarrow V$$

be a self-adjoint map on V . Then \exists an orthonormal basis for V such that the matrix representing L w.r.t that basis is diagonal with all entries real

Proof:

Since L is diagonalizable, we have

$$V = \bigoplus_{\lambda} \ker(L - \lambda I) \rightsquigarrow \text{eigenspace}$$

and by prop pg 90, each kernel is orthogonal to all others.

Using Gram-Schmidt process, we may choose an orthonormal basis for each kernel.

Hence, we have an orthonormal basis of eigenvectors for V which diagonalizes L

So matrix w.r.t this basis is diagonalizable, real

■

Corollary Spectral Theorem for Hermitian matrices

Any complex Hermitian $n \times n$ matrix A is diagonalizable, all its eigenvalues are real.

The basis of eigenvectors diagonalizing A can be chosen to be orthonormal for the standard Hermitian inner product on \mathbb{C}^n .

Hence \exists a unitary matrix U such that

$$U^{-1}AU \text{ is diagonal}$$

Corollary

Any real symmetric $n \times n$ matrix A is diagonalizable, and all its eigenvalues are real

The basis of eigenvectors diagonalizing A can be chosen to be orthonormal for the standard inner product on \mathbb{R}^n

Hence \exists an orthogonal matrix Q s.t

$$Q^{-1}AQ \text{ is diagonal}$$

Examples

Find a unitary matrix A that diagonalizes

$$A = \begin{pmatrix} 1 & 0 & i \\ 0 & 2 & 0 \\ -i & 0 & 1 \end{pmatrix}$$

A is Hermitian $\iff A^* = A$

\Rightarrow we can find such a matrix

Finding eigenvalues of A ,

$$\det(\lambda I - A) = (\lambda - 2)^2 \lambda = 0 \implies \lambda = 0, \lambda = 2$$

$$\text{Eigenspace of } \lambda = 2: \text{ker}(A - 2I) = \text{sp} \left\{ \begin{pmatrix} 1 \\ 0 \\ -i \end{pmatrix}, \begin{pmatrix} i \\ 1 \\ 1 \end{pmatrix} \right\}$$

$$\lambda = 0: \text{ker}(A) = \text{sp} \left\{ \begin{pmatrix} 1 \\ 0 \\ i \end{pmatrix} \right\}$$

Diagonalizable

$$P = \begin{pmatrix} 1 & i & 1 \\ 0 & 1 & 0 \\ i & 1 & i \end{pmatrix}$$

with

$$P^{-1}AP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

But P is not unitary (since columns not orthonormal)

Let u_1, u_2, u_3 be columns of P .

By prop 9.8, $u_1 \perp u_2, u_2 \perp u_3$ (since eigenvalues distinct)

Apply G-S process to u_1, u_2

$$v_1 = u_1$$

$$v_2 = u_2 - \frac{\langle v_1, u_2 \rangle}{\langle v_1, v_1 \rangle} v_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Then $\{v_1, v_2, u_3\}$ is an orthogonal basis

Normalise. Hence

$$U = \begin{pmatrix} \sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \\ -i/\sqrt{2} & 0 & i/\sqrt{2} \end{pmatrix}$$

ISOMETRIES AND NORMAL MATRICES

Isometries

Definition Isometry

A linear map $L: V \rightarrow V$ on an inner product space V is an **isometry** if it preserves the inner product i.e.

$$\langle L(u), L(v) \rangle = \langle u, v \rangle$$

Proposition

The eigenvalues of an isometry have modulus 1

Proof:

real case follows

Let V be a complex inner product space.

Let $L: V \rightarrow V$ be an isometry

Let v be an eigenvector of L , eigenvalue λ

$$v \neq 0 \text{ and } L(v) = \lambda v$$

We have

$$\begin{aligned} \langle v, v \rangle &= \langle L(v), L(v) \rangle = \langle \lambda v, \lambda v \rangle = \bar{\lambda} \lambda \langle v, v \rangle \\ &\stackrel{\substack{\uparrow \\ \text{isometry}}}{=} |\lambda|^2 \langle v, v \rangle \end{aligned}$$

$$\text{Since } v \neq 0, \langle v, v \rangle \neq 0 \implies |\lambda|^2 = 1$$

$$\implies |\lambda| = 1$$

■

Proposition

Let V be a finite dimensional complex inner product space. Let

$$L: V \rightarrow V$$

be an isometry. Then there is a basis for V diagonalizing L

Spectral Theorem for isometries

Theorem

Let L be an isometry on a finite dimensional complex inner product space V .

There exists an orthonormal basis for V relative to which the matrix of L is diagonal, with all eigenvalues having modulus 1

Spectral Theorem for unitary matrices

A square complex square matrix is unitary

$U^{-1} = U^*$ \iff columns are orthonormal w.r.t standard Hermitian inner product.

Proposition

Let V be a complex inner product space,

$$L: V \rightarrow V$$

be a linear map and $B = (v_1, \dots, v_n)$ be an orthonormal ordered basis for V

Then L is an isometry $\iff M_B(L)$ is unitary

Lemma

An eigenvalue λ of a unitary matrix satisfies $|\lambda| = 1$

Corollary

The eigenvalues of an orthogonal matrix (over \mathbb{R}), if they exist, are 1 or -1

Theorem Spectral Theorem for unitary matrices

Any unitary matrix U is diagonalizable, and all its eigenvalues have absolute value 1.

The basis of eigenvectors diagonalizing U can be chosen to be orthonormal for the standard Hermitian inner product on \mathbb{C}^n .

Normal Matrices and commuting linear maps

Definition Normal

A complex square matrix A is said to be **normal** if it commutes with its conjugate transpose

$$AA^T = A^T A$$

Hermitian, real symmetric, unitary and (real) orthogonal matrices are all normal

Definition Invariant Subspace

If $L: V \rightarrow V$ be a linear map, U is a subspace of V .

U is said to be an **invariant subspace** for L if

$$L(u) \in U \quad \forall u \in U$$

This is equivalent to saying we can restrict the map L to U

$$L|_U: U \rightarrow U \quad \text{defined by}$$

$$L|_U(u) = L(u) \quad \forall u \in U$$

defines a linear map

Lemma

Let $A, B: V \rightarrow V$ be commuting linear operators, i.e.

$$AB = BA$$

Then any eigenspace for A is an invariant subspace for B

Proof:

Let $A, B: V \rightarrow V$ be linear maps with $AB = BA$

Let λ be an eigenvalue of A , v be an eigenvector of λ

$$v \in V_\lambda = \ker(A - \lambda I) \text{ corresponding eigenspace}$$

$$AB(v) = A(B(v))$$

$$= (BA)(v)$$

$$= B(A(v))$$

$$= B(\lambda v)$$

$$= \lambda B(v)$$

$\Rightarrow B(v)$ is an eigenvector for A with eigenvalue λ

$$B(v) \in V_\lambda$$

V_λ is an invariant subspaces for B

■

Simultaneous Diagonalisability and diagonalizability by unitary matrices

Theorem

Let V be a finite dimensional vector space

Let $\{A_i\}_{i \in I}$ be a family of commuting linear operators $V \rightarrow V$, and assume A_i is diagonalizable for every i

Then the A_i are **simultaneously diagonalizable**, meaning there exists a basis of V w.r.t. which all A_i are represented by diagonal matrices

Theorem

A square matrix A can be diagonalized by a unitary matrix

\Updownarrow

A is normal